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Shell Stability Related to Pattern
Formation in Plants

In the last few years we have studied the possible relation of instability of a shell surface
to the patterns that develop in plants. In the present work, it is found that there is a linear
relation between the epidermis (tunica) thickness and the wavelength between new leaves

C. R. Steele (primordia). This relation is near the buckling wavelength calculated from the geometry
Professor, of the tunica and interior (corpus) cells. The main focus is on the changes in pattern that
Fellow ASME occur. (1) The wild variety of snapdragon has primordia that bulge out of plane, while a
Division of Mechanics and Computation, mutant has in-plane folding. A crude mechanical model is an elastic ring constrained at
Department of Mechanical Engineering, the outer diameter and subjected to uniform growth, represented by thermal expansion. It
Stanford University, is found that the difference in the in-plane and out-of-plane buckling can be accounted for
Stanford, CA 94305 by a modest change in one geometric parameter. (2) The second change is that in the

unicellular alga Acetabularia The geometry consists of a standard cylindrical pressure
vessel with a nearly hemispherical end cap. At a point in time, the end cap flattens and a
uniform circumferential array of new shoots forms. A mechanical model for the growth is
proposed, in which the wall consists of a viscous material with a locally linear relation
between mean stress and creep (growth) rate. The result is that the elliptical shape for
stable growth can be regulated by one parameter of viscosity. The results reinforce the
suggestion that the stability of the surface is instrumental in the generation of plant
patterns, and that substantial change in pattern can be controlled by the modification of
few mechanical parameterS0021-89360)03002-9

1 Introduction not morphogenesis, is by Karam and Gibgd&)7]. Our basic

o premise is that for mechanical behavior both unicellular algae,
. T_he_ pattern of plant leaves ar_1d other orgdpbyliotaxis 'S such asAcetabularia and multicellular plants, such as the sun-
Intriguing. The exact number of different phyllotaxes oceurming o ver, are equivalent to a pressure vessel, as indicated in Table 1.
nature is not known, because new patterns are continuously re
ported. However, every pattern is one of two types. In the one, theis™is similar to many root hairs as well, in that growth takes
primordia compose a double set of spirals, such as seen in the Qijiee in the cap region as more of the cylindrical region is formed.
cone, pineapple, or sunflower head. A most interesting features 5 certain point,Acetabulariahas a transformation of the tip

the number of spirals crossing a fixed radius. The numbers in thgyion from nearly hemispherical to elliptical, as shown in Fig.
two dlrec'tlons. are most commonly two successive terms in then). When the ratio of the width to heiglat/b is greater then
Fibonacci series. Each new leaf is at the golden section of th8out 1.4, an array of lateral shoots is initiated, as shown in Fig.
angle between the nearest older primordia. In the second typeigd). Each of these will grow as in Fig(d) and then perform the
pattern, the whorl, the new primordium forms exactly betweeghange in Fig. (b) to produce more lateral shoots. The main stem
two older ones. Details of the classification and mathematicalso repeats the cycle several times. Every pressure vessel engi-
analysis of these patterns are in Jg&h and much of the current neer knows what happens when an elliptic head on a cylinder has
thought on morphogenesis is in the collection of artig¢[&3). a/b greater than 1.4. The circumferential membrane stress is com-

These patterns have aroused the scientific urge since antiquisessive, and a ring of circumferential buckles, just as in Fig), 1
Prevalent today is the reaction-diffusion theory of Turif8, may occur. In pioneering work, Martynd8] quantified the rela-
which forms the basis of the discussion of morphogenesis by Haien of elastic buckling to pattern formation. He showed that for
rison[4]. A disadvantage of the theory is that a fundamental irAcetabulariathe physical properties and dimensions are sufficient
gredient, themorphogenshas not yet been identified. Howeverto produce elastic buckles that are predictive of the number of
many interesting patterns resembling those in plants can be gghoots. Just by flattening the end cap, one obtains pattern from no
erated with solutions to the equations. pattern because of the buckling.

The view we have had is that the mechanical aspects of theSoAcetabulariais a great motivation for considering the role of
cells and tissues may play a significant role in pattern formatiogtability for other plant patterns. Howevekcetabulariais also a
Surprising for most engineers is that the internal preséurgor ~great success for the reaction-diffusion theory. Harrison ¢o4l.
pressurg inside plant cells is from 7 to 10 atmospheres. Thignd Harrison and Hillief10] find that the dependence of the
provides important stiffening and can cause stability problems.Rfittern on temperature and calcium is close to that predicted by
is difficult to imagine that nature would ignore this tremendoutfe theory. Dumais and Harris¢hil] summarize the known facts
driving force available for pattern generation. Apparentl nd theories orcetabulariaand related qlgag and indicate that
Schwendendef5] first recognized this possibility. A recent sur- he strongest case can be made for the diffusion theory. However,

vey of shell stability including several examples from nature, b€ mechanical consequences of the change from Fag td Fig.
1(b) cannot be ignored. The complete theory will undoubtedly

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF include both mechanical an.d electro-chemical effeC’[_S. .
MECHANICAL ENGINEERSfor publication in the ®URNAL OF APPLIED MECHAN- A more complex shape is the sunflower, shown in Fi@).2
Ics. Manuscript received and accepted by the ASME Applied Mechanics Divisiod,he double rows of spirals are clear. Typically in the sunflower,
Dec. 10, 1999. Associate Technical Editor: L. M. Wheeler. Discussion on the pagg¢iere are 55 spirals in the one direction and 89 in the ofives
should be addre'ssed to 'the Techmcgl Eqnor, Professor Lewis T. Wheeler, De’%ﬁccessive terms in the Fibonacci S@[ié@he distance between
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, . L. h
and will be accepted until four months after final publication of the paper itself in tH§1€ Primordia is around ten C§||S, so the pattern concerns the tissue
ASME JOURNAL OF APPLIED MECHANICS. and not individual cells. Hermalez[12] shows a change of the
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Table 1 Relation of pressure vessel to alga and plant

Acetabularia Sunflower Head

Pressure Vessel (one cel) (many cell$
shell wall cell wall tunica layer
internal liquid/soft elastic material ~cytoplasm/vacuole corpus
viscous creep/thermal expansion growth growth

ential stress in the negative curvature region. This is exactly the
region in which the new primordia are forming. So the same prin-
ciple seems to be working for the complex multicellular structure
as for one cell. Compression is needed for the generation of pat-
tern. A confirmation of the compression is shown in Figd)2
Dumais[14] made diagonal cuts across the primordial sunflower
head. The sides of the cuts in the center dome gape apart, indicat-
ing a region of tension, while the sides of the cuts in the annular
region of new primordia formation remain pressed together, con-

cross section of the sunflower head, which is similar to that §fStent with the calculation. _ _
Acetabularia An almost hemispherical dome flattens to the shape WU [13] carried out a number of calculations for local buckling,
indicated in Fig. 2). Of interest is the annular region of negatives®me of which are reported in Gregtb]. These were with Fast4

Gaussian curvature. The calculations for this by J¥@], using

for the complete shell of revolution and for an elastic plate on an

the Fast4 shell of revolution program, produced the stress res@@stic foundation. The plate equations are the well-known von
ants shown in Fig. @), with a significant compressive circumfer-Karman equations([16]), but with an initial displacement that

Acetabularia . The

Fig. 1 (a) Tip growth in the unicellular alga
growth takes place in the end cap, which is nearly spherical
(elliptical with a/b=1.2 for this example ). The cylindrical por-

tion remains of constant diameter, equal to about 50 pm. The
load-bearing wall, composed mostly of mannan polymers, can

be seen as a thin transparent layer surrounding the tip. The
cytoplasm (dark granular region ) and the central vacuole exert
a pressure of 7—-10 atmospheres on the wall and thus provide

the driving force for elongation of the cell. (Photograph from
Dumais [14].) (b) In Acetabularia , the elongation stage stops at
regular intervals and the end cap changes from nearly hemi-
spherical to ellipsoidal (a/b=1.9 for this example ). Here only
the wall is shown. When the ratio of radial to axial semi-major
axes of the ellipse reaches a value near 1.5, significant circum-
ferential compression occurs, which causes buckling of the
surface. (From Dumais and Harrison, [11].) This is just as in a
standard thin-walled pressure vessel. (c) Axial view of Ac-
etabularia after buckling. It appears that the compressive cir-
cumferential stress causes a buckling pattern that initiates the
development of an equally spaced array of lateral hairs. (Such
a symmetric pattern is called a whorl. ) Subsequently, each lat-
eral hair elongates as in  (a). (From Dumais and Harrison [11].)
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produces the nonlinear shallow-shell equations. Of interest is the
result for a region with two initial hills, representing two primor-
dia from the preceding generation. Adding sufficient compressive
stress causes a buckle that appears approximately at the golden
section between the two initial hills. Thus buckling seems to pro-
vide the local mechanism for generating the complex spiral pat-
terns such as in Fig.(2). To see if this is effective on the global
scale, subsequent calculations have been carried out by Steve
Rennich on the complete circular plate, as discussed in Green
et al.[17,18. The spiral patterns can indeed be generated by suc-
cessive buckling far into the post buckling regime, as shown in
Fig. 3(@). The calculation involves a standard perturbation proce-
dure with suitable scaling of the perturbation steps to restrict nu-
merical instability. For the linear calculation at each step, a Fou-
rier series in the circumferential direction and finite difference in
the radial direction is used. Since the steps must be small, the total
calculation requires substantial tinfaours on a work station
Sometimes in the calculation, one set of the spirals would be lost
and the pattern would degenerate into the ridges shown in Fig.
3(b). This seemed to be a severe defect of the simple plate model
until the work by Carpenter et aJ19] appeared, that shows a
mutant in snapdragon with this ridge behavior. So the stability
calculation appears to have some predictive capability. A particu-
lar challenge to the stability analysis is the extreme pattern in
Costus described by Kirchoff and Rutishauge20], which is an
unusual “spiral” that looks more like a staircase. This is still a
spiral in the generalized Fibonacci serigs7,8 . . .), according

to Jean[1].

The main lack is that we have not shown how the spiral pattern
can originate either de novo or as a transition from a whorl, which
is the normal behavior in plants. In calculations with an initial
random displacement of the surface, the whorled pattern will ap-
pear but not spirals. Spirals can be obtained when appropriate
boundary conditions are prescribed. Indeed, in the calculations,
there seems to be nothing special about the Fibonacci pattern;
other numbers of spirals can propagate equally well. In nature,
there is an indication that if the spiral pattern is lost, it is difficult
to reestablish. In the experiments of Hamdez and Palmd21], a
circular cut was made in the central dome of the sunflower at
some distance from the ring of the new growth. Fast4 calculations
([13]) show that circumferential compression occurs near the
edges of the cut. So it is consistent that new growth occurs on
both sides of the cut, but the spiral pattern seems to be lost. In his
present work, Dumais has repeated the experiment and found a
tendency for the spiral pattern finally to reestablish, although the
number of spirals is not a Fibonacci number.

What triggers and controls these changes? The change from
whorl to spiral is common, and a change from one type of spiral to
another occurs in several plants. Kwiatkowska and Florek-
Marwitz [22] catalog such transitions and show that they are re-
lated to changes in the area of the central dome. Thus the geom-
etry is of importance. We wish to find to what extent such changes
in form can be related to changes in material properties. As a
beginning to the question, we address in this paper a mutation in

Transactions of the ASME
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tunica
e
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(b)

Fig. 2 (a) Sunflower during the pattern development. The older florets are at the outer region, while the new florets are generated

at the rim of the inner smooth dome. Each new floret is at the “golden section” between those of the older generation, which
generates the spirals. (See Jean, [1].) At this stage, the sunflower head has a diameter of around 3—4 mm. (b) Shell model for the
sunflower. The outer layer of cells  (tunica ) have substantially thicker walls to withstand the internal pressure, in comparison with

the inner cells (corpus ). The region of the floret initiation has negative Gaussian curvature of the tunica. (Geometry from Herna " n-
dez [12].) (c) Stress calculated for the shell model of the sunflower. The region of floret initiation has substantial compressive

stress in the circumferential direction shown by the shaded area. (From Wu [13].) (d) Effects of cuts across the sunflower
capitulum. The tension regions gape open, but the region of the floret initiation is pressed together because of the compressive
circumferential stress.  (From Dumais [14].)

snapdragon, and the changeAicetabulariafrom Fig. 1(a) to Fig. wavelength is usually small in comparison with the thickness of
1(b). As a preliminary, however, we consider the basic question tife corpus, the plant interior can be represented as a half-space.
whether the geometry of the plants is consistent with the possitiler a half-space with a sinusoidal deformation on the surface with

ity of mechanical instability. the wavelength, the linear elastic equations can be solved for the
relation between the surface stress components and the displace-
2 Local Stability of a Layer ment components. The relation can be written as a matrix of sur-

e stiffness coefficients. For teaxis normal to the surface, the

The emphasis in the preceding stability calculations was on t S >
tion is for plane strain:

pattern and not on the physical relevance of the parameters. il
key parameter is referred to in Green et[aR3,1§ as the “natu- o 2mE 201-v) 1-2v
ral” wavelength. This is the wavelength for minimum buckling ZZ}: —[ } 1)
load of a flat plate on an elastic foundation. Now, we wish to AM1+v)(3—4v)| 1-2v 2(1-v)

establish the physical basis for this natural wavelength. The mo lwhich E is Young's modulus, and’ is Poisson’s ratio. For
consists of a sandwich plate, representing the tunica, on a hzﬂ 3ne stress the result is '

space, representing the corpus, as indicated in Fig. 4.

w
u

U-ZX

2 1-v
1-v 2

2.1 Half-Space Stiffness. In the preceding calculations the w
ul

foundation stiffness was taken as constant. Since the buckling

@

O'ZZ}_ 27E
TN1+v)(3-)

Ozx
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(b)

Fig. 3 (a) Comparison of the actual sunflower  (left) and com-
putations (right). The computation is with the use of the von
Karman equations for a plate on an elastic foundation. The
plate is compressed by a uniform radial edge force. The plate is
initially flat, but edge conditions on the rotation are prescribed

that have the spiral pattern. For subsequent buckling, the spiral
pattern propagates toward the center, as shown. Typically, the
distance between calculated buckles is about twice the natural
wavelength. (Calculation by S. Rennich, color enhancement of
figure by J. Dumais, from the cover of the  American Journal of
Botany , July, 1999.) (b) Calculation of plate post-buckling, in
which spiral pattern degenerates into ridges. The distance be-
tween ridges is about equal to the natural wavelength. (Calcu-
lation by S. Rennich. )

For an incompressible material= 0.5 and for the tangential dis-

+ — Yl
-
I
'l

Fig. 4 Representation of a plant by an elastic layer, consisting

of a sandwich plate representing the tunica, attached to an
elastic half-space, representing the interior cells (corpus ). The
compressive force N in the tunica causes a buckling deforma-
tion, indicated by the dashed line, with the wavelength \. The
thickness of the tunica is  f, the thickness of the walls of the
tunica is t;, the thickness of the interior cell walls is t,, and the
cell diameteris L.

0'22_47TE_k 3
WO e ®)

Of course, the value df is dependent on the wavelength

2.2 Plate on Half-Space. For a sinusoidal displacement of a
plate on an elastic foundation, the critical compressive force re-
sultant is

N=D 2m)? k 4
BN e )

A
whereD is the effective bending stiffness of the plate. For the
foundation stiffnesk, a known value, the minimum of Ed4)
occurs at the wavelength=27,D/K. If the foundation for the

half-space Eq(3) is used, then the minimurhl occurs at the
wavelength

3D 1/3
A= 277( E—H) 5)
and has the value
Ner=(3DER)™. (6)

For the dimensions in Fig. 4, and if the structural material in the
walls of the cells and the plate is the safeellulose, then the
bending stiffness and half-space modulus are

D%%Etztf ; EHmEztrW @)
and Eq.(5) gives the critical wavelength
A f 1/3
T 2”(5) ®)
where the geometric factor is
f~—— 9)

and Eq.(6) gives the critical compressive strain

Ncr B 36 1/3
E2t; | f2

(10)

2.3 Relation to Plant Patterns. In an unpublished study

placement set to zero, Eq(1) gives the ratio of the normal stressinitiated by C. Schmid and continued by J. Dumais, micrographs
and the normal displacement, which is the equivalent elastic fouanvailable in the literature for a wide variety of plants were exam-

dation stiffnesk for the half-space:

240 / Vol. 67, JUNE 2000

ined. The result for the wavelength, i.e., the distance between
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Fig. 5 Relation of observed peak to peak distance between
primordia and the tunica thickness. The dotted line is the best
fit, with a slope 14.1. The dashed lines show the natural wave-
length for a plate on an elastic substrate with relative volume
fractions of f=10 and 100. Generally, there seems to be little
difference in the whorl and spiral patterns. ~ (Data collected from Fig. 6 Buckling and organ shape. (A) Wild-type stamens (st)
literature by C. Schmid and J. Dumais. ) in snapdragon. Creases traverse the formative zone, making a
ring of humps. (B) The deficiens mutant of snapdragon. The
formative region undulates in a plane as a ribbon, forming five
. . . . . . cup-like primordia.  (C) Out-of-plane buckling mode for a thick
primordia, as a function of the total tunica thickness is shown ifhg. (D) In-plane buckling of an elastic ring constrained by a

Fig. 5. Except for four plants, there is a remarkably linear correvall at the outer margin.  (From Green [24].)

lation. A precise determination of thickness and the cellulose con-

tent of walls is impossible from the general micrographs of the

cross section. However, it appears that the ratio of tunica thick-

ness to wall thickness is greater than the ratio of interior cell wall 3.1 Out-of-Plane Buckling. With the thermal heating of the

to cell diameter, so a lower bound on the factor B).is f=6.  constrained ring, it is possible for the ring to accommodate the
Added to Fig. 5 is the relation E8) for the “reasonable” value excess strain by deforming out of the plane of the ring, as indi-

of f=10 and for a large value df=100. These bound most of thecated in Fig. c). The analysis is based on the total potential
measured values. energy:

Generally, the wavelength between buckles in the calculation 2a1
Fig. 3(@) is roughly twice the natural wavelength. So it seems that &
the results in Fig. 5 showing the actual pattern to be at a longer H:J' E(E|2K§+G‘]K§+ku§)_8EAaT Rdg (1)
wavelength than the “reasonable” value 6f 10 is consistent
with the calculations. However, when the buckles degenerate intowhich R is the radius of the ringg is the circumferential angle,
ridges such as shown in Fig(i8, the ridges are at the naturalE is the elastic Young's modulug, is the areag is the coefficient
wavelength, since the solution is nearly one-dimensional betweehthermal expansionT is the temperature change, is the geo-
ridges. The actual dimensions for the developing plants Fig.rBetric moment of inertia of the cross section about the axis
seem consistent with the concept that the pattern is a consequeheeugh the centroid parallel to the plane of the ring, &ids the

e
:.-g-v,’_'.,l D
Sloon]

0

of the stability of the surface. torsional stiffness. The stiffness of the elastic foundatiok iBhe
twist is given by
3 Stability of Constrained Ring . =£(%*X ) 12)
As a first study of the possible relation of mechanical properties Y Rlide 2

to form, the snapdragon is considered. In snapdragons, stamgnghich y, is the rotation of the cross section, and the rotation in
originate as five symmetric vertical undulations in an annulygg orthogonal direction is

(Fig. 6(a)). In thedeficiensmutation, a comparable annulus undu-

lates horizontally, making a wavy ribbon with five foldEig. 1 du;

6(b), as discussed by Gre¢d4]). To see whether this change in X2=T"Rde (13)
form might be related to a change in the mechanical properties, ) ]

we consider the stability of an elastic ring constrained from radiihereus is the out-of-plane displacement. The change of curva-
expansion, similar to a doughnut inside a rigid coffee cup. THEre measure is

wall of the cup restricts any outward radial displacement of the

ring. In addition, a uniform elastic foundation connects the ring to Ky==|—=+x1 (14)
the bottom of the cup, which constraints axial displacement. R\ d6

Growth is smulated by a unlform heatlng qf the ring. A; th%nd the strain is from moderate rotation theory
temperature increases, the stress in the ring increases until a criti-

cal condition is reached, after which the ring will no longer re- 1,

main in the original shape. The stress will be released by a defor- €= 5 X2 (15)
mation of the ring that could be out of the initial plane of the ring, ) )

as shown in Fig. &) or that could consist of an in-plane defor- The assumed displacement is

mation, as shown in Fig.(6). The following analysis is routine, Us=U cosnd (16)

but the results may be of significance in understanding the behav-
ior of plants, so the details are included. with the rotation

Journal of Applied Mechanics JUNE 2000, Vol. 67 / 241



U In-Plane Buckling of Ring
X1=— =cosnf a7)
R 1.0
in which n is the harmonic index. The choice gf reduces to Be/R=0.1
zero the high energy torsion term in EG1), leaving the potential '; 0.8 - S 9
EAaTR? U2 £
[I=7R EI2(n *1) +k —Rz— 2 (18) % 0.5 4 0.05
]
So for nonzerdJ, the critical temperature is £
o 0.2 -
. RZ[k El, (n?-1)2 1 -
TEAlw TR (19)
0.0 T T T T
. .. . - N < © © o N
Forn>1, the approximate minimum is at the harmonic index - "
Harmonic index n
k 1/4 R 1/2
n= R( EIZ) = (R_) 771/4 (20) Fig. 7 Thermal strain to cause in-plane buckling as a function
g

of the harmonic index. For a given value of geometry Rg/R, the

hich ai th - t-of-pl buckling t t minimum gives the critical condition. For the thicker rings, the
which gives the minimum out-ol-plane buckiing temperature . jiica| condition stabilizes at the harmonic n=>5.

2(kElL)¥?2 R
aTg=—pp =27 7" (21)

1 2
whereR; is the radius of gyration for the cross section and the H—WR[EEIS(nZ—l)Z(?)

dimensionless foundation stiffness factor is
W\2 [W\3(n?-1)2 3 W\4(n2-1)%
R] T\R] T2n7 TOIR] Tad

W W\2 1
——+(n —1)( )4n } (29)

The potential should have a minimum value for the equilibrium
solution. Setting the derivative dfl with respect tow to zero

kR? +EA
7= EA (22)

3.2 In-Plane-Buckling. The analysis is based on the total —2EAaT
potential energy given by

27 1

= Jo E(EI3K§+EA82)*SEA“T Rd6 (23)  yields the relation between amplitude and temperature:

W[ El; (n?-1)? 3[W\2(n?-1)>?

in which |5 is the geometric moment of inertia of the cross section RIEAR ™ 2 1- 2\R] Tz

about the vertical axis. The strain from the moderate rotation

theory is given by 3 (W\3(n2-1)* W (n?—1)?

TlR T TR T2 Y
ldu w 1
8:§@+§+§){§ (24) (30)

The solution procedure is to fix the harmonic indgxhen com-

in which u is the displacement in the circumferential directian, pute the thermal straiaT as a function of the displacementR.

is the displacement in the radial direction, and the rotation is The minimum aT is the critical value at which the ring will
change from the compressed state to the buckled state. In Fig. 7 is

ldw wu shown that minimum thermal strain for each harmonic index. The
X3="Rde TR (25)  only parameter is the ratio of bending to stretching stiffness:
R El
The change of curvature measure is S| =2
g R (EARZ) ' (31)
1 % (26) For a thin-walled ring of circular cross section with radiyshe
"s"Rde - ratio is

The ring attempts to expand with increasifig but is con- &:

strained by the wallv=<0. An approximation for the stability limit R W

can be obtained by assuming a reasonable displacement shape

function. The following consists of a uniform compression of thél—he results in Fig. 7 show that the thicker rings, with larger values
ring and an inextensional sinusoidal deformation: of the ratio, have a buckling mode with the harmonie 5. For

thinner rings,R;/R<0.025, the critical value of thermal strain

r
(32)

w=W(—1+cosné) (27) decreases and the harmonic increases. The values of thermal strain
are excessive for the usual engineering problem, but for the analo-
W gous problem of growth, such values may be reasonable.
U= Fsmne (28) 3.3 Condition for Buckling Mode Change. For simplicity,

we consider the ring with circular cross section, for whighand
in which W is the unknown amplitude. Substituting this deformat; are equal. The critical temperature for in-plane instability Fig. 7
tion into the potential Eq(23) yields the result depends on only the paramety/R, while the critical tempera-
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ture for out-of-plane instability Eq21) depends on the additional As

parameterzy. However, if the critical harmonic inder is pre- f= e (34c)
scribed, then Eq(29) gives the necessary value a@f and the 0
critical out-of-plane temperature also depends onlyRgiR: Then Eq.(34a) and Eq.(34b) give the relation
Rq|? s ds s ds
T =2n2(—g . 33 = ,
“op R (33) of(9r(s) JoR(S) (35)

For the harmonin=5, the values of the out-of-plane buckling
Eq. (33) are lower than the in-plane values Fig. 7. Thus the ou
of-plane mode Fig. &, c) will be observed. Ify is increased with
Ry/R held fixed, then the critical harmonic indexand tempera-
ture for out-of-plane buckling will increase. For the case an
Ry/R=0.05, an increase im of a factor of 4 is necessary to dri
change from the out-of-plane buckling to the in-plane buckling aj
n=5. Similarly, forRy/R=0.1, » must increase by the factor of

Since the radius as a function of arclengthr(s) completely
fefines a surface of revolution, E@5) yields a unique solution
for s(S). Thus for a given ratio of stretches, there is a unique
apping from one surface of revolution to another.

If the ratio of stretches has the constant vafyen the cylin-

cal portion of the mapping in Fig.(B), and instead of ar-
ength, the angle from the apex is used, BB becomes

2. Thus a modest change in the ratio of ring stretching stiffness to L ™2y de 2R, dd
foundation stiffness changes the buckling mode. ar J fr :J = (36)
c @ ]
in which the subscript 1 denotes the meridional radius of curva-
4 Model for Growth in Acetabularia }_ure_. Sincep = ¢(P,L), the derivative of Eq(36) with respect to
ives
Now we show that the transition from Fig(a) to Fig. 1(b) can 9
also be obtained by changing one physical parameter. We con- dp rf
sider the transformation of a shell from a hemispherical configu- oL r,fa (37)
ration, shown in Fig. &), to the shape shown in Fig(l8, con- o )
sisting of a cylindrical portion with an end cap of the sam@nd the derivative of Eq34a) gives the result
geometry as the initial. The initial and current configurations are oL f
indicated by the capital and lower case letters. This represents the 20_ - —Cosp (38)
steady-state phase of the growthAafetabulariaas well as typical Ay af;
root hairs([25]). Hejnowicz et al.[26] provide an Eulerian for- . .
mulation for the problem of the axisymmetric growth. However, As L f r df 39
we use a Lagrangian formulation. The current arclergjtimea- e afg Cose+ fds (39)
sured from the bottom, is a function of the initial arclen§rhe . o
stretch ratio(growth) in the circumferential direction is where the dots denote the time derivative. So for any shape of the
cap in steady-state growth, there is a simple dependence of the
r(s(sS)) local grow rate on the angle from the apex.
0= R(S) (34a) Measurements of the tip growth by Chg2b] show a distribu-
. o tion that is roughly isotropic and approximated by the cosine
and the meridional stretch ratio is variation. In the formulation of Hejnowicz et 426], the growth
ds is in terms of the radius as a function of the axial length, for which
)\S:d_S' (34b) the simple relations Eq$38) and(39) are not apparent.

4.1 Hemisphere. For the shape of the hemisphere in Fig.

Denote the ratio of the siretches by 8(a) and Fig. &b), the current angle as a function of arclength is

o
5 for Oss<L
@ = 40
Tlrost for L<s<L+ 0
- < —
- > a or S as
‘\' s and the radius is
r=asineg. (41)
2 Thus Eq.(35) yields the solution for the current angle in terms of
(a) the initial:
aw
5 for 0<O=P
e ) cotd/2 o B (42)
A g —
aCOtcotCIJLIZ or ®u 2

where®d, is the value of the initial angle that maps to the equator
of the current configuration:

L¢—
(®) D =2 -
L=2aco expa . (43)

Fig. 8 (a) Initial hemispherical shell of radius  a. The angle ® is .

measured from the apex and the arc length S is measured from So for largeL, the transition anglé>, becomes small, and most of
the equator. (b) Current configuration consisting of hemi- the initial hemisphere has mapped into the cylindrical portion of
spherical shell with a cylindrical extension added. the current configuration.
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The results can be expanded for small valued &, which
yields the results

L
o~d+ asintb (44a)
o L L}
sinp~sin®| 1+ acostb (44b)
L (@)
A=1+ acosCD. (44c)

So the rate of growth for increasing lendtthas a simple cosine
distribution:

A E ® 45 L

~ cos®, (45) t

which agrees with the general result £E§8) a =
Due to the turgor pressure of 7-10 atmospheres, there is sub- (b)

stantial membrane stress in the surface. The stress is con@ta

in the hemisphere, and the circumferential stress in the cylinde
twice as much. A simple mechanical model would have materi
with the same properties at every point of the wall. The growth
rate due to the addition of material to the wall from the cytoplasm
would be a function of the local stress. So, the cosine distribution

cement of magnitude #. (b) Elliptical end cap with semi-

Eﬁ 9 (a) Perturbation of hemispherical shell by the radial dis-
ajor and minor axes a and b.

Eqg. (45 in a region of constant stress seems to be inconsistent N :E‘ (500)
with such a simple model. However, the matter deserves further 02
study. Thus the perturbation of the hemispherical shape causes a non
4.2 Perturbed Shapes. Small changes in the initial and cur-isotropic stress state. So, consistent with an isotropic growth, the
rent shapes can be considered in the form mean stress is used:
=(asi + — Ng+N 1 d
r(e)=(asing)[1+ 7(¢)] (46a) _ 32 0Ny 14 7+ §ta”‘Pd_n}- (500)
R(®)=(asin®)[1+X(P)]. (46b) ¢
. . . Thus the shear stress is assumed to not effect the gr(8ek.Fig.
Equation(35) gives the perturbation result for the angle 9)
p~0+p (47) 4.3 Rate Equation. A linear relation between growth rate
in which and mean stress is
L[t d i A=N\g| 1+ N 1) (51)
B= 5+J:p Cosq)@(n—gﬂ)dd) sin® 0 ba No

where Ay and y are constants as indicated in Fig. 10. For an
interpretation, the growth is considered to be resisted by a friction
term and a viscosity, inversely proportional foFor high values
cos®. (48)  of the mean stress, saturation occurs. The time derivative of Eq.
(48) and the stress from E@50d) substituted into Eq(51) yields
This also agrees with the general result Bf) when the current the linear differential equation for the perturbation shape function
shape is the same as the initigé N. 7.
For the stress, additional geometry is needed. The circumferen-
tial and meridional radii of curvature for the perturbed shape Eq.

and the stretch ratio

A=1+ L 7 _sin® dd
T a ), (cos@)zw )

(46a) are . 4
r Growth %b
F2=Ging ~allt n(e)] (4%) Rate
¢ 1o |—————==-
! 1+ +1 d7 4% |
r=——-—=a ang — !
1= Gose do 7(¢) ¢ do (4%) |
Therefore the current membrane stress resultants in the circumfer- ] r* I § [} A_T/
ential and meridional directions are " M‘ N 1§t5 No
ean Memobrane ress
r r a d
thz2 2— —2) =~ p_ 1+ 77+tanqo—77} (50a) Fig. 10 Growth rate as a function of local mean stress for a
2 rg 2 de simple, purely mechanical model. Growth occurs between a

threshold value T and a saturation value of 1.5. For the spheri-
N _Pra _ E‘[1+ ] (500) cal and elliptic caps, the stress is near N, and the slope of the
S 7 curve has the positive value . For the cylindrical region, the
effective stress is higher by a factor of 1.5, and growth does not
in which p is the turgor pressure. The resultant for the unperturb@dcur. The value T could represent an initial frictional resis-
hemisphere is tance, while vy is the inverse of the effective viscosity.
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1 d Eq. (59). Thus for high values of, the deviation from the hemi-
n+ —tan<p—”. spherical shape is small. The steep slope means that the growth
2 de rate can vary considerably at different points with little change in
(52) the stress, which justifies the hemispherical result (Eg).

The shape of the end cap is independent of any vertical shift in
gﬂe curve, since this is done with a changeNi, which only
affects the elongation rate as given by Eq(56). In fact, A can
be an arbitrary function of time and the shape givenjiagmains

1 dz the same. To change the shape, the slppmust be changed. So a
n+ —tango—” (53) change from a nearly spherical cap to an elliptic cap can be ac-
2 de complished by simply decreasing the valueyofThe actual tip in

Fig. 1(a) hasa/b=1.2, which is a little large for quantitative
accuracy of the perturbation analysis. However, this shape gives
k=0.49 and from Eq(59) the valuey=1.9. The flattened shape

L ("2 sing -
a J, (cosg)2 7%

COS@=Ng| 1+

4.4 Steady-State Growth. If the time variation iny is de-
leted from Eq.(52), then the equation for steady-state growth i
obtained:

L .
ECOSQD:)\O 1+y

which has the exact solution

n= 1 2L gle)—1 (54) in Fig. 1(b) is beyond the perturbation analysis but would corre-
Y| 3\ 2 spond to a small value of.
where the functiorg is 4.5 Stability of Solution. By dividing Eg. (52), by cose
and taking the derivative, the equation can be written in the stan-
1+ cosg+(cose)? dard form
9(e)= (55a)
1+ cosg d [1dy 2 2 .,
. . : . P—|=—|——y=——(sing) (60)
which can be expanded in terms of cosines of even multiples of de\pde/ N,y y
4 10 47 in which
gle)= ;+4 ﬂ_l cos 2<p—8< 1- E) cosdp+ ... p=sing(cosg)?
(55b) y=(sing)%7.
=1.2732+0.2441 cos 3—0.02103 cos ¢ The nonhomogeneous term in EGO) yields the steady-state so-
lution Eq. (54). For p constant this is the same equation as for a
+0.00483cosp+ ... (55) string under tension attached to a viscous foundation. The varia-

L . ) tion in the coefficient does not affect the stability of the system.
Thus the function is reasonably approximated by the first tWenhis can be most easily seen by a “WKB” asymptotic approxi-

terms. After dropping the others, then mation for the homogeneous equation, valid for small valueg of
which is
4( 1 ! +8 10 1 2 55d
g(e)~ oy ey (cose)”. (55d) o ¢
_ y~p*exp *i—=—--— (61)
Nciwt_theEratt;Scan beI tchoser! to make the constant term in the ‘/;\077/2
solution Eq.(53) equal to zero: in which 7is an unknown decay time. This approximation is sin-
8 Yaul L gular at o=0. However, a uniformly valid solution can be ob-
No==|1— =—|—=0.686—, (56) tained in terms of the Bessel function
3 377 a RO
and the only term remaining in the solution is ¢'?cose ¢
7];\,\4 (sin(p)S/Z \]1 - ex - ; (62)
1 L1610 , k S VAoy7/2
=———| ——1](cos¢)°=—(cos . o .
K Y )'\Oa 3\ 37 (cose) 2( ¢) ®7) With Eq. (62), the approximation for the spectrum of eigenvalues

of the decay time is
which gives exactly the perturbation from a spherical to an ellip-

tical surface Fig. @), for which the parametek is related to the _ 1 _
major and minor semi-axes T~ for n=34,.... (63)
2n“Ngy
a? (a—b) » ) . .
k=5—-1~2 (58) Each mode has a positive decay time. Since the set of modes is

2
b a complete, any perturbation will have a positive decay time and the

; ; o i system is stable for positive.
Using Eg. (56) in Eq. (57) this gives the product of the Measurements of the tip of the root hair by CH&h] indicate

arameters: - .
P a shape that is elongated, i.e., with:0. The present model even
10 with various extensions fails to yield a stable growth wkt#1 0,
(——1) unless a variation along the meridian in the material properties is
ky=4 = =0.940. (59) Prescribed. So this is an unresolved feature.
(17 E) 4.6 Change in Turgor Pressure. An approximate solution

can be obtained for a small change in the internal pressure. The
From these results the conclusion is that a steady-state groffution is taken in the form E¢57) with k as a function of time.

is possible for an elliptic perturbation from the hemisphere. Sindden Eq.(52) splits into terms that are constant ¢nand those
there is no growth in the cylindrical region, the relation betweeY@rying with cos 2p, giving the coupled equations
growth rate and stress must have the form indicated in Fig. 10.

=

1

Po

The form Eq.(5)) is the region neaN, with the positive slopey.
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The amplitude of the ellipticityk is inversely proportional toy, am Z:)\o 1+y (64)



L4 k . «k However, an analysis of the growth process, with a locally linear

————=N\yy3 (65) relation between growth rate and stress, shows that the ellipticity
a3m 4 2 of the tip region depends on a single mechanical property. A
in which p is the new value of internal pressure. Eliminating thélynamic stability analysis indicates that the steady-state growth is
axial length changé gives the equation fok: stable. The equations couple the tip shape and the axial growth

rate. With this coupling, a step decrease in internal pressure
B—l causes a “shock,” consisting of a step decrease in the axial rate
Po that recovers with time. This is similar to the measurements by
) . . . L Green[27] on the diffuse growth of the internodal cell of the
in which the decay time is=1/(6\oy). The solution is green algaNitella. We predict that similar behavior will occur
4 p with tip growth.
k= 3. ——1)(1—e"’7) . (67) There are many things falling into place which reinforce the
Y Po conjecture that the physical stability of the surface plays a key
This indicates that the ellipticity increases with an increase in thiele in plant pattern formation. It is not just a matter of providing
internal pressure. Interesting is the axial growth late a set of equations that can produce a pattern. As argued by Green
[24], there is a close interaction between the mechanics and gene
p s expression to produce the stunning variety of plant patterns. By
1+y p_0’1 (1+2e°7) (68) using the mechanics, the task for the genes is simplified in that
) ) ) o only the physical properties and boundary conditions need be set
which has a jump due to the step in pressure. This is exactly tfig; the pattern comes out as a consequence. The buckling modi-
behavior reported in Greef27] in a different type of cell that fies the stress field which can trigger the expression of genes that

grows uniformly along its length, rather than at the tip. It is interyre jmportant for the subsequent stages of growth and pattern
esting that the present analysis of the tip growth with the localkgrmation.

linear relation between growth rate and stress in Fig. 10 produces

similar results. Indeed a good fit of the results in GrE&n can

be obtained with Eq(68) with reasonable values of about 10 Acknowledgment
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1+vy (66)

k+k 4
Ty

1+vy
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4.7 Change in Material Property. A similar analysis can
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Dr. Steele has synthesized his asymptotic solutions with flnl\%d South America. He is a member of the American Institute of

element concepts to develop computational procedures for pr . ; . ; -
lems of shell intersections that are accurate, general and wid ronautics and A_stronautl_cs, the Ac_oustlcal Some_ty of America,
! e American Society of Biomechanics, the American Academy

used in engineering practice. His insight into the behavior 8 . . . i N
shells provided the stepping stone for his work in modeling a Engineering and the American Society for Gravitational and

explaining hearing mechanisms. Space Biology. ) = -

Among his seminal contributions, Dr. Steele developed the firstHiS honors and awards include a Certificate of Recognition
truly three-dimensional model of the cochlea. His work on thi#om the National Aeronautics and Space Administrati®887)
and the basilar membrane are at the forefront of the field. Hef@ bone tissue analyzer and method; the Humboldt Senior Fel-
also working on the complicated motions of the tympanic menowship Award from Germany(1994; an honorary doctorate
brane, commonly known as the eardrum. Since there has bdin Zaporozhye State University, Ukrairi&997); and Eminent
limited success during the past 20 years using finite element mefitademician of the Ukrainian Academy of Higher Education
ods to model the eardrum, Dr. Steele is using analytical method$998.

Dr. Steele has been involved in the development of a noninva-Dr. Steele received his bachelor's degree in mechanical engi-
sive technique for determining the mechanical characteristics rering at Texas A&M, College Station, in 1956. He earned his
bone by measuring its vibrational response. This approach hsctorate in engineering mechanics at Stanford University in
been used in a range of applications, from examining the effed860.
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| A Parametric Model for a Class of
swassinmies | Foam-Like Isotropic Hyperelastic

Warsaw University of Technology,

PL-00-632 Warsaw, Poland IVI ate ri d |S

S. Turteltaub’

Assoc. Mem. ASME, A parametric model for foam-like materials is proposed and its correlation with experi-
Department of Mechanical Engineering mental results is analyzed. The class of foam-like materials is assumed to be described by
and Applied Mechanics, an isotropic elastic potential based on a general model proposed by Ogden. The class is
University of Pennsylvania, parametrized using the relative mass density of the material. Functional relations between
Philadelphia, PA 19104 material parameters and the relative mass density are obtained from experimental data. A

simple application problem, namely the optimization of a foam for maximum
energy absorption under homogeneous compression, is formulated and solved numeri-
cally. [S0021-893600)02802-9

1 Introduction to describe a whole class of materials with a single functional
. . relation. The model proposed here is essentially an extension of
enﬁgu%(t)g;ctseddir? lrj]taﬁjyreASSTé%l;’S?/%JOC;U;?'b?ﬁéeréﬂiﬁor%n:ﬁglﬁlo den’s potential and is applicable for large three-dimensional
LS . . 9 ormations. It comprises a single functional relation that can
of cellular solids, i.e., materials that at a relatively small lengt escribe the behavior of foam-like materials. One of the motiva-
scale are composed of cells whose geometry consists of Wa”?ions for the present model is to analyze design problems where

?;iﬁgs veiltjrtl g(f)rﬁe ﬁjigsi\ssghdalrsnoaﬁnﬁ:i ng ttr?ee Cfr?;elztio\:‘logje-one anticipates large three-dimensional deformations and where
: y gniig he objective is to determine an optimal distribution of relative

tween this type of geometry and its optimality in terms of streng ass density throughout an energy-absorbing device. Since the

and weight. Other examples of cellular solids include synthetify o jnciudes the relative mass densitgis a parameter, then
materials such as open-cell elastomeric foams, which are co in be naturally used as an optimization variable '

monly used in a variety of practical applications. In particular, s o tiine of the paper is as follows: In Section 2 some basic
fofams are ofte? used ||ndener|gy-abzo;b|ng devices and their rapge.iion and definitions are introduced: in Section 3, a specific
of operation often includes large deformatiofsee, e.9., Maiti (|55 of stored energy functions—used to describe the behavior of
et al. [2]). Roughly speaking, models for foams can be divideg|agiic foams—is considered; the asymptotic behavior of the
into two large groups: models based on the foam’s MICroSTUCIYe, je| for small deformations is analyzed in Section 4. Uniaxial
and phenomenological models. A model based on the foam’s s mogeneous deformations are included in Section 5 and the va-
crostructure that has received wide attention is the one develomﬁo(ii[y of the model is studied in Section 6 where a parametrization
by Gibson, Ashby, and co-workefsee Gibson and AshiiB]).  f the model with respect to the relative mass density is derived
'I_'he Gibson-Ashby model comprises two dlstlnqt functlonal_relqjased on experimental data. A simple application problem—the
tions for the range of deformationéinearly elastic and nonlin- 4 imization of an energy-absorbing foam—is analyzed in Section

early elastic—the latter referred to as the plateau/densification ¥e-gome final remarks and conclusions follow in the last section.
gion). This is essentially a one-dimensional modr uniaxial

compressio)) however, it is not clear how to extend it to a three- o
dimensional setting for the nonlinear range. Also, from a compd- Preliminaries

tational point of view, it would be difficult to keep track of each  An essential parameter that describes the microstructure of a
region in a three-dimensional deformation. ~ foam is its relative mass density that is defined bX)
Commonly used phenomenological models in finite elasticity , (X)/p., wherepy(X) is the mass density of the foam at a
are based on the stored energy potential proposed by Blatz anddiint X in an undeformed stress-free reference configuration and
[4] or, more generally, in expressions for compressible hyperelgs-is the density of the solid material from which the foam is
tic materials developed by Ogdeib]. However, neither the made. The parameter 0<r=<1, describes at a continuum level
Blatz-Ko nor the Ogden potentials include any explicit informathe (average volume fraction occupied by the dense solid mate-
tion related to the microstructure of the foam. NonetheleSS, thi§| ina representative unit cell at a microscopic level. Now, con-
information, as shown by Maiti et d2], can be useful for design sider a(possibly nonhomogeneous body that occupies a region
purposes. The aim of the present work is to introduce a charactgy; in its reference configuration and IgtX) be a smooth defor-
istic parameter of the microstructure into the phenomenologiGajation. The  deformation gradient is defined as
constitutive information. Experimental results show that the relqc-:F(x)EGraq,((x) and it is assumed that the Jacobian of the
tive mass density of arsotropic elastic foam plays an essentialgeformation is positive, i.e.J=J(X)=defF(X)>0, VX e Q.
role in the response function. This parameter is perhaps the sifive polar decomposition of the deformation gradienFisRU
plest characteristic feature of the microstructure and can be usegRr, whereR is the rotation tensofdetR=1) and U, V are,
respectively, the right and left stretch tensors. The class of foams
To whom correspondence should be addressed. considered here is assumed toibetropic and represented by a

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  stored energy density that depends on the stretch tensor and the
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the paper should be addressed to the Technical Editor, Professor Lewis T. Whe@‘ﬂfﬁplicitly via the relative mass density. From the requirement of

Department of Mechanical Engineering, University of Houston, Houston, TX 77204, R ; ; _
4792, and will be accepted until four months after final publication of the paper itss)fbjecnwty (@nd from the a§sumptlog of isotropythe stored en

in the ASME DURNAL OF APPLIED MECHANICS. ergy density must satisfV(U;r)=W(QUQ";r), YQe O(3),
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whereO(3) is the group of orthogonal tensors. As a consequenseme restrictions on the form of the stored enef@y Specifi-

of this, W depends orJ only via its isotropic invariants. Hence, cally, it is assumed that the stored energy is polyconvex and also
the arguments of the stored energy function are: the relative mgadisfies a growth conditiofsee, e.g., Bal[6] and Dacorogna
densityr and any set of three independent invariantsuofor, [7]). Polyconvexity is assured if there exists a functidly such
equivalently, ofV). In particular, a useful functional expressionthat W,(U,CofU,J;r)=W(U;r) and W, is convex inU, CofU

for Wis provided byW=W(\;,\»,\3;r), whereW is a symmet- andJ for everyr. Thus, for the potentia(5), polyconvexity is

ric function of the principal stretches. In terms of the stored efatisfied if, Vie[1N], one hasmjai(e;—1)=0, niBi(Bi—1)

ergy functionW, the Cauchy stress tensor is given by =0 and p;y(yi+1)=2(ma;+niB;)(yi+1)=0. Moreover, to
guarantee existence of solutions, it is sufficient to impose a

1 & AW . growth condition of the formw,(U,CofU,J;r)=c;+c,([|U]%
o==> Mo—RPRT, (1) +|Cofu|%), wherec,eR, ¢,>0, q;=2, q,=0,/(q,—1) and
JiZ1 Ton
o _ [U]=VU-U= tr U? (see Ball and Muraf8]). In this case, the
where)y, (k=1,... K, andK<3), are thedistincteigenvalues growth condition is satisfied if
of the stretch tensor§i.e., U=EL<:1)\£,<, V=3K ]\ (RPRT,
and the correspondinB are projectorsof U). The first Piola- =2 R m>0. n>0 ViellN 6
Kirchhoff stress tensor is given b§=JoF . «=2 B a-1 ' T [1N]. (6)

which implies polyconvexity if y,=—1. In (5), the term
EiNzlpi(J’Vi— 1)—which measures the change of energy due to a

The form ofW assumed here is based on a general express@gtange of volume—is required to tend te as J—0". This
for the stored energy function of compressible materials proposeendition is imposed so as to assign an infinite amount of energy

3 Specific Constitutive Relationships for Foams

by Ogden[5], i.e., in order to compress a body to a single point. Thus, it is assumed
N that
WA Ao Agin) = 2mA S+ NS +15-3) 3j e[1N]:9;>0. @)
=1 -
5 b 5 Observe that if the material is polyconvex, théh— +o asJ
T[N N2) T+ (N2h ) P4 (Ngh )P = 3] =N\ h3—+ for smooth deformations, even though
+pi(3" -1}, @) =N op(d 7 -1)—— Ei’\lepi when ally; are strictly positive. Itis
noted that the generalized Blatz-Ko material is a special case of
whereJ=X\;A,A3 and (5) with N=2 andm;=1/4uof, m,=1/4uo(1—f), n;=n,=0,
2(ma + nB) a1:2, Ay= — 2, '}/1:2]/0/(1_27/0) and Y2= — Y1 Where Mo )
pi:#, Vie[1N]. (3) andw, are, respectively, the shear modulus and Poisson’s ratio for
Vi small deformations anflis a parameter presumably related to the

In (2), N=1 is a number chosen depending on the required acc(@lume fraction of voids—although not equal to(see Blatz and
racy of the model. The form of the parametpyollow from the Ko [4]). Hence, forf#1, the generalized Blatz-Ko potential is
requirement of a stress-free undefornfegference configuration. Polyconvex if 1/4<v,<<1/2 but does not satisfy the growth con-
In order to introduce a functional dependence on the relative maion sincea,<0. For the special cade= 1, the Blatz-Ko poten-
density, it is assumed that the material parametgrsg;, y;, tialis polyconvex for any value of, e (—1,1/2) and satisfies the
m,, andn, are functions ofr, i.e., &= &(r), .B:Aﬁ'(r), " growth condition(see Horgari9] for a discussion on the loss of
=|3/i(f), mil:rhi(r), n=h(r). It is wolrth r{wentionling Ithat evlen ellipticity of the Blatz-Ko potential It is noted in passing that the
though the above functions are referred to as material parametSRECial cas@ =0, y=a;d, Vi<[1.N] can be viewed as a gen-
the relevant mechanical behavior of the material describe@by eralization of the Blatz-Ko potential. In this case, the stored en-
is characterized by the derivative of the stored endigy, the ergy becomes

functionsa; , etc., do not necessarily have a physical meaning per N

“ 1
se. The derivative oW with respect to the principal stretches is Wo(U;r)=E 2m;| (tru®i—3)+ S(J""i‘s— 1)|.
=1
- N
MZE i[2m_a_)\ai+n_ﬁ_)\ﬁi()\ﬁi+}\/3i) The limit case5—0 for this special potential can be useful for
N =1 | M L m materials that, for example, have a negligible lateral displacement

for uniaxial compression.
_Z(miai+niﬂi)37‘]] I,m#Kk, (4)
4 Asymptotic Analysis for Small Deformations

Experimental results for foam-like materials in the range of
small deformations are relatively well characterized. Hence, it is

wherek, I, m range in{1,2,3. The stored energy?2) can be ex-
pressed alternatively as

- N convenient to describe the behavior of a material given(®y

W(U;r)=2 [2m;(tr U%—3) +ni(tr Cofufi—3) under small deformations since it must match the experimental
=1 results. To this end, consider the expansion of the stored energy in
+p(377-1)], (5) terms of the Lagrange strain tendbr=1/2(C—1). From (5), the

) _ _ - o stored energy is given byW(E;r)=1/2\q(tr E)2+ uq tr E
wrj]%rs,_%l.ncw is symmetric positive definite, Cof’i=(CofU)#i +O(||E]®), where the Larenoduli are given by
Specific functionsa;, Bi, v, m;, and n; appropriate for _ 2 2 B 2 2
foams are described in Sections 4 and 6. However, it is worth )‘O_zl (niB7+pivp), 2,uo—i21 (2mjef+n;B),  (8)
noting a few facts here: In order to guarantee the existence of . . .
solutions to boundary value problems, it is useful to consid&ence the corresponding bulk modulksis, on using(3),
N
2The projectors satisfy the following relatior8f_,P,=1 (wherel is the second- SKOZE 2[miai(ai+3y;) +nBi(2Bi+3vi)]. 9)
order identity tensor P,- P)=tr(P,P,)=0 for k#| and trP ,=multiplicity of \ . i=1

N N
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The corresponding Saint-Venant—Kirchhoff approximation is ob- It is worth mentioning that one can use other models for open-
tained by neglecting higher order terms\W{E;r). The second cell elastomeric foams in the linearly elastic range instead of Gib-
Piola-Kirchhoff stress tensorT&F1S) for the Saint-Venant— son and Ashby’s modékee, e.g., Warren and Krayr{ikO] where
Kirchhoff material can be expressed @s=dW/JE=\y(trE)l the Kelvin moduli do not depend on the same power)off one
+2uoE. Formally, the linearization of the Saint-Venant-wishes to use Warren and Kraynik’s model, the asymptotic match-
Kirchhoff material(Hooke’s law can be obtained upon replacinging presented in this section should be modified accordingly. Fur-
the Lagrange strain by the infinitesimal strain in the previous efiermore, in view of the previous analysis, if negative Poisson’s
pression forT (in which case all stress measures are equivalentatio values are considered in the model for small deformations
In order to guarantee that the material is stable under linear péwhich has been observed in certain foame has to keep in
turbations from the reference state it is required that>80, mind that polyconvexityand existence of solutionss not neces-
2u,>0. These conditions naturally impose restrictions @n  sarily guaranteed foN=1.

Bi, vi, m;, andn;, however, it is noted that such requirements

do not gyaranteenor it is assume)dstability for large deforma- 5 ynjaxial Deformations

tions. It is also worth to point out that, for the special case

=0, yi=a;8, Vie[1N] and sincevy=\o/(2(\o+ 1q)), it fol- In preparation for the analysis of experimental data it is useful
lows f'rom'(g) that vo= &/(1+23), which isindependenof «; {0 derive explicit formulas of the stress-stretch relations for simple
andm; . ' homogeneous uniaxial deformations. Formulas for other modes of

Experimental results and models based on simple microgeoﬁgmogen_eous deformations such as .bi-axial Qeformation, dilata-
etries suggest that for open-cell elastomeric foams iritigarly ~ tion, or simple shear can be derived in a similar way. However,
elastic range Young's modulusE, and Poisson’s ratie, depend theé most commonly available experimental data correspond to
on the relative mass density as follows: = E ()=Eg2, » simple compression or tension. Throughout this section it is as-

o= Eoll) =E4l", Vo

=o(r)=1/3, whereE, is equal to the dense solid material’sSumecj that the body is homogenegus., r =r(X) = constant. In

Young modulus(see Gibson and AshbjB]). Observe that, as a view of (1) and(4), the Cauchy stress tensor is given by
first approximation, the Gibson-Ashby model assumes that Pois- 1 N
son’s ratio does not depend on the relative mass density, whichis o= - z {2m;;Vei+n; B[ (tr CofvAi)l — CofvAi]
equivalent to assume that botfy and i, depend on thesame I=
power ofr. Since 2uo=Ey/(1+ vg) and 3x¢=Eq/(1—2vy), the _ —y
Gibson-Ashby model corresponds to 2(mja; +n;B;)J il 12)

R R Let A, be the stretch in the axial direction. In the case of simple
Ki(r)=3ko(r)=3E4?, Ky(r)=2/0(r)=3Eg? (10) compression or tension,,=A3=\ andR=I. A functional rela-

tion between\ and A, can be established by requiring that the
where Kl:kl(r) and K2=k2(r) are the so-called Kelvin principal Cauchy stresses in directions perpendicular to the axial
moduli. It is also noted that, from a theoretical point of view, iglirection must vanish, i.e., in view @f.2),
would be more appropriate to find from twedependenexperi- N
mental tests the dependence with respect to the relative mass degi- N 2 Bi(NBi L\ By — o 4nR. 2y -y
sity of the Kelvin moduli. 2 (200 i A B PN TN = 2(my g+ ) (M A7) 7]
The functionsm; andn; can be suitably prescribed in order to

asymptoticallymatch the present model with these experimental =0. (13)
results (whereas the functiong;, B;, and %y, can be used to The first Piola-Kirchhoff stress in the axial direction is

describe the nonlinear rangén view of (8),, (9) and(10), the N

functionsm; andn; can be chosen in various wayis terms of o 2 o Bir B S
@i, Bi, vi, Ky, andK,) in order to have an asymptotic agree- ! .21 A_l[mi“i)‘lurniﬁikll)‘ = (Miai+0iBi) (A A5 7],
ment. However, for the special calie=1, the correspondence is (14)

uniquely determined as follows: o ] ] o
which isformally a function of\; only since, in view 0f(13), the

1 [2(2B8+3y)K,— BK, lateral stretch\ can k_)e interpreted as an implicit function »f. _
“6al = B—v(B—2a) |’ The above expression corresponds to the stress-stretch relation
(11) that should be used when comparing the present model with ex-
1 [aKy—(a+3y)K penr_nental data obtalnec_i from uniaxial compression téists,
n=— T ReT YR ) nominal stress versus axial streteinder the assumption that the
3B ap—y(B—2a) test corresponds to homogeneousleformation. In general, Eq.

. o (13) cannot be solved in closed form faras a function ofz; .
For the caséN=1, one can determine explicitly th(.a.ranges of th‘l’-lowever, for the special casg=0 andy,= «; 5, one can show
valuesa, B, andy that satisfyboththe growth conditiong6), (7) 4 - N=A,=Ag=A;", henceJ=A1"2", where v=5/(1+29).
and linear stability about the undeformed configuratiéfhe Observe that
growth conditions are sufficient in order to guarantee polyconvex-
ity.) The admissible regions can be obtained from the requirement log\
Ky, K,>0 and Eqgs.(6), (7), and (11). To determine these re- Y= loghy’ (ni=0), (15)

gions, it is convenient to study three casks: (0,1], Ke(1,4], . . . . . .

=~ — - which provides an interpretation of as a generalized Poisson’s
gnd Ke(4,+2) whereK=K,/K,. Not_e that the limits of the 5 for large deformations. The limit cage-0 (i.e., v—0) cor-
intervals forK correspond to, respectively,,=—1, 19=0, vo  responds to an axial deformation with negligible lateral deforma-
=1/3 andvy=1/2. It is found that for the rangk  (0,1] (i.e., tion. The principal value of the first Piola-Kirchhoff stress tensor
voe (—1,0]) itis not possible to satisfy the growth condition. Forin the axial direction is, when;=0,

the other cases, the admissible regions are as followsKfor N o

e(14: a=2, B=al(a—1) and 0<y<y,; for Ke(4,+=): 51:2 ! 'D\‘l?fi,)\l—ﬂiv], (n,=0). (16)
=2, B=al(a—1) and ya< y<ys if 2a/B<(K—4)/(K—1) or A

Ye<y<7a if 2a/B>(K—4)/(K-1), wherey,=(a/3)(K—1) From (15), it follows that the special potentiaV, (i.e., a gener-
and yg=(8/6)(K—4). alization of Blatz-Ko’s potential predicts alinear relation be-
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tween log\ and log\, for uniaxial deformation. This could be ado not include the lateral stretche&?, they need to be computed
reasonable assumption @empressiorsince experimental results nymerically for each\{) and eachx. The rest of the algorithm,
for elastomeric foams reported by Maiti et {2] show that\~1, pyiefly reviewed below for the sake of completeness, is similar to
hence»~0. However, experimental measurements for polyurgne one described by Twizell and Ogdet?] except that in order
thane foams irtensionconducted by El-Ratal and MallickL1] to updatex the new values ok ® and the corresponding gradients

reveal that log. and logh, do not depend linearly and that thep, 4 o yoree (9 need to be recalculated every timés modi-
lateral stretch deviates considerably from 1. This point is anaInyﬁg'd

guantitatively in Section 6.

1 Assume an initial valugo={(a?,8%,7?)}\ ;.
6 Applicability of the Model 2 From(13), computer® for eachA {9 (for 1<k<M).

(K) i
In order to investigate the applicability of the present model, 3 From (14), computeS;™ to obtain the vector of errork

_ (W M; . . :
one has to determine numerically the material functians 3; , ={E{ )}K:Jl and_thus_ the matrix of gradien®8 using the
and 3, based on experimental data. This can be achieved upon €xPressions derived in stepd) and(e) above.
applying a modified version of the method used by Twizell and 4 Updatex from iterationq to g+1 as follows:

Ogden[12] (essentially a least-squares error minimization using Xq+1=Xg— [ PEPq+ 411" *PIE,,

the so-called Levenberg-Marquardt algorithmideally, one

should consider data from independent modes of deformation amterel is the identity matrix(of suitable size depending on the
then minimize the difference between experimental and theoretumber of data and unknownand the scalar parametey, is
cal values simultaneously. However, the experimental data avaiksential to avoid singularities in the algoritiisee Twizell and
able for this work are limited to uniaxial compressiand ten- Ogden[12] for a detailed description of )it Steps 2 to 4 are
sion) only. A repeated until the method converges.

In order to determine th&unctionsa;(r), B;(r) and¥(r) one  On applying the above algorithm wit=1 to the experimen-
can proceed as follows: experimental values for homogened@é data reported by Maiti et al2] (see also Gibson and Ashby
compression are usually points of the fori, (S;) wherex, is [3]), one can determine the parameters, andy for five relative
the axial stretch an, is the first Piola-Kirchhoff stress in the mass densities of polyethylefie the ranger €[0.0245,0.3) and
axial direction. Ideally, the value of the lateral stretchs also three densities of polyurethaneg[0.012,0.043). Subsequently,
reported but this is sometimes not the case. Assuming the lattdre functionsa, 3, andy can be obtained from a simple curve
the first step is to consider experimental data §et§ ,s{¢V)}  fitting. A parabolic function was chosen for polyethylene and a
from a representative numbeD of relative densities(i.e., linear relation for polyurethane due to the limited number of rela-
i, ... .Ip), where kxk=M;, 1<j<D andM;j is the number of tive mass densities. It is noted. that po[yethylene foams typically
experimental points for each relative mass densjty Then, for haveclosed cellsaind a nonelastic behavior upon unloading. How-
each subset of experimental points correspondingitced r; , the ~ €ver, Maiti et al[2] propose a similar constitutive model for poly-
corresponding values @fi(j), Bi(j) , andyi(” (1<i<N) that mini- ethylene foams than for polyurethane foams in compresgion

mize the error for each data subset are determined using Bj§Sent work makes a similar assumption, though clearly the

method described by Twizell and Ogden. Subsequently fun!@_odel would not be valid if the material has a hysteretic behav-
. ~ - ~ ' ior). Nonetheless, the effectiveness of the numerical procedure for
tional forms fore;(r), Bi(r) andy;(r) are assumece.g., a poly-

results in compression is best illustrated with data for polyethyl-

nomial or a power layand a second least-squares minimization 'Bne foams since they cover a wider range of relative mass densi-
carried out for the pointsr{, ("), etc. At the end of this process tjeg.

the model is fully determined in terms of its dependence.dfor The nominal stress versus axial stretch curves obtadrfeet

simple homogeneous compression, in view (©8), in general correlating the functiong, 3, and¥ are shown in Figs. {poly-

there is no closed-form expression for the lateral stratchterms _ o e
of N\, (except, e.g., for the special case of SectigpnH&ence, for ethylene,£;=0.7 GPa and 2(po|yuretAaneESfO.045 GPa Fig

the general case, the following preliminary steps need to be impli® 3 corresponds to the functions 8, andy. It is noted that
mented before applying the method used by Twizell and Ogdgppse functions are in the admissible range defined in Section 4
(the indexi ranges il 1,N], the superscripitis dropped since the (recall that the Gibson-Ashby model assumes tatK;/K,
following applies for giverr;): =4). It is worth noting that these curves should not be used for
- R - R extrapolation, but rather for interpolatigas a function of).

(@) Prescribe the Kelvin modulK;=3k, and Ky=2u, as
functions ofr (or, equivalentlyEy(r) andvo(r)) consistent with
experimental data for small deformations. For example, use the

functions(10). 1
(b) Obtain the functiongn, andn; (use(11) for N=1). A
(c) From the equilibrium Eq(13) compute(symbolically the : 1.1 1.3 !
following derivatives:dN/da;, dNIIB;, INIJvy;. These deriva-
tives are given as functions a@f;, B;, vi, A1, A and its func- -1 r
tional form is relatively complex but can be easily obtained with . . 0.3
symbolic manipulator. . 2 x 0.115
(d) Following Twizell and Ogden[12], define EW=S{  [mPpa] o 0.1
— S, whereS{¥ is the experimental value of the nominal strest 5 . 0.058
andS{¥ is the stress given bi4) as a function ofx;, B;, 7, A1 0.0245
andX (there is oneE® per each experimental poikj. . L
(e) Compute symbolically the matrix of derivative®,;

= a;, i vi}i—, using the expressions for
JEM/aa;, EM/aB;, SEM oy}, th fi
INda, INIB;, INIIy; . Fig. 1 Nominal axial stress versus axial stretch for simple

. . . . compression (polyethylene ). The experimental data are taken
For afixedrelative mass density;, the unknown vector iX  from Maiti et al. [2]; the solid lines correspond to the theoreti-

={(a;,Bi ,yi)}iNzl. Since it is assumed that the experimental dat@l model. The dashed lines are obtained by interpolation.
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Fig. 2 Nominal axial stress versus axial stretch for simple

compression (polyurethane ). The experimental data are taken

from Maiti et al. [2]; the solid lines correspond to the theoreti-
cal model.

To further investigate the applicability of the model, experi-
mental results reported by El-Ratal and Malligkl] were ana-
lyzed. Their results consist of uniaxi#nsiontests for two dif-
ferent open-cell polyurethane foams with densitigs;
=0.017kgm 2 and p,=0.035kgm 3. The experimental data
include both axial and lateral stretches. As opposed to the previ-
ous casgcompressiopn a different approach is used here since
there is no information about the foam’s behavior in the linearly
elastic range(i.e., Young’'s modulusEg is not reported for the
specific foam samples except for values derived from the numeri-
cal analysis of the nonlinear behavidn this case, the parameters
m andn are not specified usin@L1) but computed from the non-
linear data in a similar way as far, 8, and y. Also, the deriva-
tives dN/da;, etc., are not required since the experimental values
of the lateral stretch\ are known. However, in addition to the
errorse=S,— S, for axial stress, the error&=S—S=—S for
(zero lateral stresses—i.e., E¢L3—need to be included in the
minimization procedure to guarantee a good agreement between
theoretical and experimental values. Using bdtB) and(14), the

There is a relatively good agreement with the experimental dtg@rametersn, n, a, 8, andy are determined—independently for
using a one-term stored energyl € 1). More accurate curve fit- 1 @ndpz—in order to minimize the sum of the errdEs One can
tings can be obtained by using more than one term. Observe tRAtaIN @ very good correlation with only one terfi<t1); how-
the functionse, B, and y for polyethylene shown in Fig. 3 are €ver, the resulting powey turns out to be negative, hence the
nonmonotonic. However, this does not result in a nonuniquéedicted behavior in compression is unrealistic. To overcome this
model as illustrated by the two interpolated stress-stretch curvé§ficulty, the approach taken here is as follows: Several experi-
for r=0.2 andr=0.25 shown in Fig. {dashed lines It is also mental points frontompressioriests for the same materigdoly-
important to notice that these curves are likely to be different ifrethang were taken from the previous data g@faiti et al.
more data are used for curve fittins., additional relative den- [2])—interpolated to the same relative densities as in El-Ratal and

sities for compression or other types of deformaltion

50

30 -
20 -

10t

PE

PU

Mallick [11] tension tests usings=1200kgm 3. Then, this

100
80
60 - PE
40 = PU
20
.-
r
0.1 0.2 0.3 0.4
- PE
= PU
s r
0.3 0.4

Fig. 3 Parameters e, B, and v for polyethylene (PE) and polyurethane (PU) as functions of the relative mass density r
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. Fig. 5 Top: Optimal polyethylene foam density Iopt (for maxi-
) ) ) ) mum stored energy ) as a function of the prescribed load  S; in
Fig. 4 Top: Nominal axial stress versus axial stretch from uniaxial homogeneous compression. As an example, the inset

uniaxial tension tests of polyurethane (El-Ratal and Mallick
[11]). The compression data (A;<1) were taken from Maiti
et al. [2]. The solid lines correspond to the theoretical model.
Bottom: Logarithmic measures of lateral versus axial stretch
for uniaxial tension tests (El-Ratal and Mallick [11]). Observe
the nonlinearity between log A, and log A. 1-

shows the stored energy as a function of r for S;=—3 MPa.
Bottom: Maximum stored energy ~ W, per unit reference (un-
derformed ) volume of polyethylene (for the optimal relative
mass density ) as a function of the prescribed compressive load

“additional” data were used in conjunction with the tension tests’ R

data in order to obtain the valuesmof n, «, 8, andy (with y>0). homogeneousiniaxial compression. Le§; be the given first

The corresponding stress-stretch curves and the relation betw®ésla-Kirchhoff stress in the axial direction and suppose that the

the axial and lateral stretchea(,\) are shown in Fig. 4 and objective is to maximize the stored energy viewed as a function of

show a good agreement between theoretical and experimental A relative mass density subject to axial and lateral equilibrium.

ues. The optimization problem can be expressed &sd rqpy
Since there are only two different densities, no correlation witf [rm.rm] that maximizes W subject td3) and (14) with S,

r is proposed in this case. However, this example highlights anS;, where

interesting point: As shown in Fig. 4, the relation between the

logarithmic measures of the axial and lateral stretches in tension ig;_ - 5 a(r) a(r)_ ~ B(r) 1y 2B(r) _

not linear as predicted by Blatz-Ko’s potential its generaliza- W 2m(r) (AT 42N 3)FN(O2(M)TEH 3

tion shown in Section 3 The potential5) provides a better cor- FP(N[(A A2~ Y17

relation(solid lines in Fig. 4(bottom). Furthermore, even though

in Maiti et al. [2] the behavior prediCted in Compression, as ShOV\/éhe Withrm: 0.0245 andM =0.3. The proposed method to solve

in Fig. 4, seems reasonable. Observe thas a monotonically thjs problem is actually similar to the algorithm used in Section 6:

decreasing function af; with values close to 1 when; & (0,1]  From the constraint&l3) and(14) one can interpret the axial and

éﬁlxcgptgogr%lj 1;;nv(\)’B|ncthwn;12ini? itga(fot:;e rrggéigaflrema{‘dillaterléteral stretches as being implicit functionsrdf.e., for givenS;,

thy ﬁ ¢ sh in Ei 1 and 2pt ?mzl It -I it is possible to solvé13) and(14) as a function of, though not
ough not shown In Figs. an . theomputed latera in closed form). However, it is straightforward to compute sym-

stretches follow the same trend. bolically the derivativesix/dr andd\,/dr as functions o, \;

S andr. Thus, the derivative ofV with respect tor—taking into
7 Optimization Problem account the equilibrium contrainé3) and(14)—can be obtained

As an application of the model developed in the previous seas a function of\, \; andr. A modified version of the algorithm
tions, consider an optimal design problem, namely the determirdescribed by Twizell and Ogd€gri2] can be once again imple-
tion of the relative mass density of a foam that provides the maxiented withr as the unknown.
mum stored energy under a given loading condition. Suppose thafhe optimal densities and the corresponding maximum value of
a homogeneougrismatic body made out of foam is subject tahe stored energy per unit reference volume are shown in Fig. 5
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Electrode-Ceramic Interfacial
Cracks in Piezoelectric Multilayer
Materials

A thin electrode layer embedded at the interface of two piezoelectric materials represents

C. Ru a common feature of many electroceramic multilayer devices. The analysis of interface

Department of Mechanical Engineering, cracks betvyeen the embedded electrode Iayer gnd piezoelectric ceramic Ieads to a non-
University of Alberta, standard mixed boundary value problem which likely prevents a general analytical solu-

Edmonton, AB T6G 2G8, Canada tion. The present work shows that the associated mixed boundary value problem does

indeed admit an exact elementary solution for a special case of major practical interest in
which the two piezoelectric half-planes are poled in opposite directions perpendicular to
the electrode layer. In this case, it is found that oscillatory singularity disappears, in spite
of the unsymmetric characters of the problem, and electroelastic fields exhibit power
singularities. Particular emphasis is placed on the near-tip singular stresses along the
bonded interface. The results show that tensile stress exhibits the square root singularity
along the interface whereas shear stress exhibits the dominant-order nonsquare root
singularity. In addition, the present model indicates that a pure electric-field loading
could induce the dominant-order singular shear stress directly ahead of the interface
crack tip.[S0021-893600)00602-4

1 Introduction a general closed-form solution. Inspirited by the role of embedded
electrode layers in multilayered electromechanical devices, then
We consider a special case of major practical interest in which the
elf’pper and lower piezoelectric half-planes are poled in opposite
ctions perpendicular to the electrode laysee Fig. 1L Our

or finding is that the mixed boundary value problem can be

Ferroelectric/piezoelectric ceramics have widely been used
design of various modern electromechanical multilayer devic
such as transducers, capacitors, sensors, and actlihtep It ir
has been observed that interfacial cracking between embed&gﬁ

I

thin electrode layers and ceramic matrix is a common cause e : . P, -
failure in many electroceramic multilayer devic@ee[5,7-9). ved explicitly for this practically significant case. In Sections 3

o . - . nd 4, the ex lutions are given for ingle interf rack
On the other hand, existing theoretical works on interfacial cracg1 d 4, the exact solutions are given for a single interface crac

fuated on one side of the electrode lay®ig. 1(a)), and for a
in piezoelectric materialgsee, e.g.[10-11)) have been limited to i ¢ i iarf ks si ically on th :
interface cracks between two bonded piezoelectric half-planespalr of interface cracks situated symmetrically on the opposite

dfdles of the electrode layéFig. 1(b tively. In both

the absence of an intermediate electrode layer, which lead to ¢ oo 0 ke © ecfrolde ayéFr:_gb_l( ), respec _|ve3|/ n O(p,f?,f)es’

ventional generalized displacement or traction boundary con e crac ‘tip fields | exhibit - power singularities
1=1,2,3), where 1/2)<p,;<p,=0<p3=(—p,), and the os-

tions and can be solved by the standard techniques of analyti ﬁ‘llatory singularity disappears. In particular, the present linear

continuation established for interface cracks in anisotropic me fhooelectric model predicts that a pure electric-field loading
(see[12)). Evidently, these existing solutions are not applicable ould produce the dominant-order singular shear stress directly
electrode-ceramic interfacial cracks in electroceramic muItlIayghead of the electrode-ceramic interface crack tip. This gives a

s?/stter'nsl 'f.’etca;ise the g_rtesenceh_?f .";‘(;h'n eleftr?fdetlayerhchga ible explanation for electrically induced interfacial debonding
electrical interface conditions while it does not affect mechanicgf)co\ e in many piezoelectric multilayer devices.

interface conditions. Recently, electroelastic field around discon-
tinuous electrode layers embedded between two piezoelectric
half-planes has been studig¢d3)) in the absence of any |nterface% Formulation of a Linear Piezoelectric
crack. To our knowledge, however, no effort has been made To _ i . i '
analyze electrode-ceramic interfacial cracks for piezoelectric bi- The basic equations for a linear piezoelectric are
materials bonded through a thin electrode layer, despite its obvi- _ _

. Py . - . O'”J—o, Dii—O
ous relevance to reliability mechanics of electroceramic multilay- ' :
ered devices.

The present work is devoted to plane-strain analysis of Yij ZE[Ui,jJFUj,i], Ei=—ei, 1)
electrode-ceramic interface cracks in piezoelectric multilayer ma-
terials. According to common practice of multilayered electroce- 0ij=Cijx Y —ijEx, D= €xij¥ij T £xiEl

ramic devices, the thickness of thin electrode layer is negligible dod he displ d electrical ial
and the ceramic materials on two sides of the electrode layer 4fBereui a|£ ¢ Cejrlljote { eth |sptacemertwt an Feft.r'cf‘f.p%em'%’
assumed to be semi-infinite. As shown later, this leads to a ndfyi » Yij, Si, andb; are ne stress, strain, electrical Tield, an

trivial mixed boundary value problem which likely does not admi'€ctrical displacement, andj , &, andej; are the elastic,
piezoelectric, and dielectric constants, respectively. In two-

dimensional casésee[14,15,11,1 let us consider the solution

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
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Fig. 1 The electrode-ceramic interface cracks lying between an electrode layer
and ceramic matrix in a piezoelectric multilayer material; (a) a single interface
crack, (b) two parallel interface cracks

wheref(*) is an analytic functionp a complex number, and a g;i =0,=0%, D2+ =D% ,E; =0, zel
constant four-element column. All equations(bf are satisfied by

; o
(2) for arbitrary f(*) if azﬁ—o;=0, Ut —u =0, EI=E[=O, y=0, |x/>a .
[Q+p(R+R")+p2T]a=0 3) ®)

where the matrixR and the symmetric matrice® and T are de- 0ij—0, Di—0, [z]-=, i,j=1.2
fined by the material constantfor details, sed16]). For exis-

tence of a nonzero vectar p has to satisfy an eigenequation. FowrhhereL:[—a a], the superscripts 4 and “ —" indicate the
it alj,

it values from the upper and lower half-planes, respectively,
ando3,, 03,, andD3 are the loadings parameters prescribed on
the interface crack.

a stable material, eight eigenroots form four conjugate pairs wii
nonzero imaginary parts. Assume thmt are four distinct roots
with positive imaginary parts and,(«=1,2,3,4) are the associ-
ated eigenvectors, the general solutionDfcan be given in the

form 3.1 Reduction to a Hilbert Problem. We first reduce the
4 problem(8) to a standard Hilbert problem. According to the stan-
_ OF o 1 T dard techniques of analytical continuation developed for interface
utx,y) 2 [8afa(Za) Tau Tu(22) 1= AT(Z) TAT(2), cracks in anisotropic medigee[12]), on using(5), (7) the con-
. tinuities of traction along the whole real axis can be written as
f(2)=(f1(z1)f2(22),F3(2z5) . Fa(z4)) ", (4)
Z,=X+py, a=1234 [Bif{ ()= By F()]" = [Byfji(x)—Bif{ (x)]~=(0,0AD5(x))"
and the associated stresses and electrical displacements are given ©)

by
where the subscript | or Il denotes the quantities associated with
the upper or lower half-planes, asd,= (D5 — D, ) denotes the
(02 ,D 2)—2 [baf () +b,f(2,)]=Bf (2)+Bf (2), unknown discontinuity ofD, across the interface, which ap-
, (5)  proaches zero at infinity. It then follows frof8) that

(71,00 = = X, [boPafi(z)+bPufo(2)], 1=1.23 B1/(2)-B.T(2)=C(z), y>0

(10)
wheref ,(*) are four arbitrary analytic functions, the column vec- -
tors b, (a=1,2,3,4) is determined by the corresponding pair B,f\(2)—Bf/(z)=C(z), y<O0
(pa laa) through
-1 whereC(z) is defined by
b,=(R™+ paT)aa=p—(Q+ P.Ra,, a=1234 (6)
a + oo
and the constant matricés B, andY are defined by C(z)— ! f w (11)
27 ), z
A:(al¥a21a21a4)v B:(bl!b21b3|b4)! YEIAB_l (7)
3 An Electrode-Ceramic Interface Crack which approaches zero as quickly ag?14t infinity. On the other

. . . and, the continuities of displacement and tangential electrical
Consider two piezoelectric half-planes bonded through a thfh@d along the bonded |nterfaF<):e give 9

electrode layer. In view of the role of embedded electrode layers
in electroceramic multilayer devices, a special case in which the o

two piezoelectric half-spaces are poled in opposite directions per{ Y Bf| (x)+Y|,B|,f,,(x)]+ LYB/f/ (x)+Y,B,f(x)]" =0,
pendicular to the electrode layer is of particular interest. In this

case, plane deformation is decoupled from antiplane gkearthe (12)
Appendix. Here, we first consider a single electrode-ceramic in-

terface crack, of length&, situated on one side of the electrode y=0, [x|>a

layer, as shown in Fig.(&). The corresponding boundary value

problem in plane strain is of the form then it follows that
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[Y|B| f((Z)-i-Y" B|| f{,(Z)]=G(Z), y>0 Co(z) Go(z)
13 C(2)= . G(2)= —— 9
43 2 JaZ—272 2 V22-a? (19

[V, B f{(2)+YyBy f{(2)]=G(2), y<O

where G(2) is an unknown function which is analytical in theWhere all multivalued functions ifl9) are defined by t2he 2"‘_9'5'
entire plane except and approaches zero at infinity as quickly ayalued branch cut along the negative real-diien j(a®—z) is

1/7%. Finally, the conditiorE; =0 along the lower real axis gives @0 analytic function with the branch cyts-«,—a] and[a,=],
while (z2—a?) is an analytic function with the branch cut

+ [—a,a]), andGy(z) is analytic in the entire plane except It

1 - — 1 : S i
2Y,| By (%) — EC(X) —2Y, | B f{(x)— EC(X) follows from (18) that Cy(z) is analytic in the entire plane except
L. Thus, the problem can now be reduced to a boundary value
P o T B problem onL.
+YuC(z)+YC(z)=(**0" y=0 (14) In fact, in terms ofCy(z) andGy(z), the condition(17) on L

. - has a tractable form
where “*” denotes some arbitrary quantities, and the boundary

condition on the upper crack face gives
2

Y
R TR i([Yn]za_ 7€ @+Cy(2)
B f{(x)~5C(2)| +|Byfi(x)-5C(2) 22
_ [Yul _
A =[G4 (2)+G; ()]st~ =63 (2 +G; (D], xeL.
— * _ T
- 0-3(2 2(010AD2(X)) ’ (15) (20)
D2
y=0, |x|<a. BecauseCy(z) and Gy(z) approach zero at infinity and cannot
exhibit square-root singularity at the crack tip, it follows from
Note that(10) and (13) give (20) that

2

Y Y
i([Yn]sg— Y_zj Co(2)=[Go(2)]5+ [Yilas

1
=5 (Yi=Y)C@+6(2), y>0
Y22

_ 1
(Y|+Y,,){B|f|(z)—§C(Z) [Go(2)], (21)

_ 1 1

(Yu+Y)| By f”(z)_EC(Z) ZE(Y'_Y")C(Z)+G(Z)’ Y<0. in the wholez-plane. Now, the expressiqi6) has the form
(16)

Hence, substitution of16) into (14) and (15) yields a nontrivial 0

mixed boundary value problem for the two unknown functions, 1 Y| Co(2)
AD,(x), defined on the whole real axis, and the vector function B, f/(2)— EC(Z): oy —
G(2z), analytical in the entire plane except Unfortunately, a 22 |ya~—z
general closed-form solution seems unavailable for this mixed 0

boundary value problem.

The major finding of this work is that the above problem does — _, Go(2)
indeed admit an exact elementary solution when the two piezo- YY) Z—a y=0
electric half-planes are poled in opposite directions perpendicular
to the intermediate electrode layer. To demonstrate this, from now
on, we shall use the assumption that the upper and lower piezo- 0
electric half-planes are poled in opposite directions parallel to the
y-axis. Under this condition, the conditidi4) becomes B, f1(2) 1 c [Y]s] Co(2)
2)— =C(2)=| 5o—
2 T2 2y | 222
23 _
([Yn]ss— Y—)(C+(Z)+C (2)) 0
22 @
— Go(z
_ [Yilas i +(Y,+Y) ! . y<0. (22
~[6"(2)-G (@]t 216" (-G (D], y=0 eV T V=0 @

17)
Substituting(21) and(22) into the remaining boundary condition
here C(z) denotes its third component, the subscripts 2 and (35), we obtain a standard Hilbert condition fG(z) on L
denotes the components @{z), and the subscript | or Il is omit-
ted when the associated quantity has the same value in the two

half-planes(see Appendix Hence, along the bonded interface oty
across whichG(z) is continuous(17) gives MGy —MG; =i 0% m, xel (23)
D*
C(x")+C(x7)=0, y=0, |[x|>a. (18)
Let us define whereM is a constant Hermitian matrix defined by
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Y33 ilYulis

0
— = — =
(Y11Y33— Y13) (Y11Y33— Yl3)
1. Y [Yulzs
1 0 Y22 Y25 Y
M= 5 Y3 Yas— Y. Yool Yag— 72 (24)
. [Yilzs Y1 1
& Y2, (Y11Y33- Y2 + Y2,
(Y11Y33_ Yis) Yzz( Y33_ _> ( Y33— _)
Y22 Y22

andYj; (i,j=1,2,3) are all real numbers associated with a piezevhere f;(z) (i=1,2,3) are three unknown functions which are
electric poled in the positivg-direction, as defined byA1) and analytic in the entire plane excelptand approach zero at infinity.

(A2) (see Appendix Substituting(29) into (23) yields
3.2 General Solution. The solution of(23) can be obtained ) o idy
using the standard method. Substituting fi ()" — Py (x) "= TF e VIx*=a%)], xel, k=123
Go(2)=29 (30)

into the homogeneous equation (@f), we obtain the eigenvalue where the constant (i=1,2,3) are determined by

problem ot 3
) -1 * | _
» 1-eom [Re(M)] | 0% | = 3, dig (31)
[RM)]" 5 IM[M]g—Ag=0, N=77opz (29 D/ =
where the branch cut is made from the crack tip along the negatwgh the results
(r:ﬁ:tliﬁé(tiséigg;d_;rci)sé;no(?z_eiozcg)nsét?ent vector. It turns out that three 0%, My(DIMp— My} _U_’z‘z
' o Y2Myy 20M (MM M3y P My, (32)
MZZM is * * *
No=0, X\ —ii\/‘ (26) 01y Myg(D5 Mo~ Mpz02))
2 L3 M 11(M oM 33— M)

* 2My; 20 M 13(M M g5— M3y

which correspond to three distinatal singularity indexes Sincef,(2) (i=1,2,3) cannot exhibit singularity of order higher

—2\, than(—1/2) at the crack tip, the conditio(80) gives
p1<p2=0<p3=—p1, iSir{ZPka]:ﬁz- d o\ oK
k _ "k 72 z-a _
(27) fl2)=5 VZ2—a?—(z+2apy) ﬁ) } k=1,2,3.
L 33)
|pk|<§v k= 11213 (

Hence, once5,(2) is obtained from29), Cy(z) andBf’(z) can
whereMj; denote the elements of the mathk defined by(24).  be found from(21) and(22), and then electroelastic fields can be
Obviously, the singularity indexes remain unchanged when tlealculated by substituting in the Stroh’s functions$’(z) by the
poling directions of the two piezoelectric half-spaces reverse sespective variables, (¢=1,2,3).
multaneously. In particular, because all singularity indexes are
real, there is no oscillatory singularity. Here, it should be stressed
that, due to the electrode layer between two symmetric piezoelec-
tric half-planes, the present interface crack problem is not syfl- Two Parallel Interface Cracks
metric about the interface. Hence, the nonexistence of oscillatoryalthough a single interfacial crack examined in Section 3 is of
singularity at the electrode-ceramic interface crack is not seljasic importance, a pair of parallel cracks caused by symmetric

evident. _ _ _ debonding of the electrode layer from ceramic matrix, as shown in

_Three linearly independent eigenvectors corresponding to thiegy. 1(b), is also of practical interest. In this case, the boundary
distinct eigenroots can be given by value problem is of the form

L 1 o=0y=0%, D;=D3, Dy=-Dj, zel
—A MMy, (0 A M 1M o3 05— 05,=0, u—u~=0, Ef=E;[=0, y=0, [x|>a
9= MM, . 0=\ 1], g3= MM, .
NMoq 0 MMy i . _Uij_}oy I_Di_>0, |Z|_}OO’ I’J._llz.. . 59
M3 Mo 13 It is not difficult to verify that all formulas given in Section 3 up

to (18) remain true provided thdt) AD,(x) appearing in(11) is
known on the segmerit=[ —a,a] as
Thus, the general solution &y(z) can be sought in the foritisee

[17) ADy()=C(2)"~C(2)"=2D3, y=0, [x|<a (35)
3 and (ii) the condition(14) holds only on the bonded part of the
Go(2)=2, fi(2)g; (29) interface and then reduces to the fo(@8). Consequently, from
=1 (18) and(35), it is found that
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,'D*
C(z):\/ﬁ[\/zz—az—z]. (36)

Thus, the remaining boundary conditi¢hb) leads to a standard
Hilbert condition for the unknown functio®(z) onL as follows:

o1,
_ Y
NG(x)* +NG(x) = a§2+[Y']23D; . xel,
22
0 (37)
N=(Y,+Y,) L

Similar to Section 3.2, the general solution(8%) is of the form

3
G(Z>:i21 gi(2)h;

(38)
whereh; andq;(z) (i=1,2,3) are given by
1 1
h,= 0 h,= 2 hs= 0
l_ 7i)\1Y33 ' 2 0 , > i)\lY33
[YII]ZLS [YII]13 (39)
b; (z+2ap;) [z—a\” )
a(2)== T2 \zra) | =123
andb; (i=1,2,3) are three constants determined by
Y11Yas— Y3 Y
ST RELC NALC R ']”Ds)
Y3 Y22
(40)

and three distinct singularity indexes are given by

. 1N IO
elnkm=—___T k=123 N,=0, Npa=Fi .
Y 2 3 Y11Y33
(41)
Note that
2 2 2
M —£>|M | M13 Y13
3 My, B IMuMag [ Y 1Y

It is seen that the absolute value of the singularity indexiven
by (41) is bigger than that obtained fro(@7) for a single interface
crack. On the other hand, similar to a single interface crack
Section 3, all singularity indexes i@d1) are real and then there is
no oscillatory singularity.

5 Singular Stresses Along the Bonded Interface

— ot (2a)t? 1 1

P
2 4x—a
~NiM (M D3 —Mya05,) (2a) 2

4M 13M 22\ X_a|
|x—al}r
2a '

(1*2131)(
and the upper limit of the normal electrical displacementor
>ais

x—al
2a

x—al

[(1+2p1)( +(1—291)(

X (44)

2a P1
|x—a|) 7(1+2P1)(

—o;M 23(23)1/2 oM 13(23)1/2

Do(x")=
2Moy|x—a] 4N My|x—a|

Za P1
H) —(1+2pq)

|X7a| P1

X —_—
2a

(1-2py)

(M2D3 —Mp303,)(2a) 12
3 > 22

4M 22\ X_a|

P1

|x—a| P1

X —_—
2a

x—al

(1—2/31)( +(1+2p1)(
(45)

Further, on using11), (19), (21), it can be verified that the lower
limit of the normal electrical displacement fara is

Y22

*)\ M qa— 2 1/2
D,(x") 712 1( % Y22Y33_Y§3( 2
X =
2 4M13\/|X_a|
2a P1 |X7a| P1
X|(1=2pq) x=a] —(A+2p)| 51~

Y22 )
Y2Ya3— Y53
(MM 35— M3y

M 337

(MD3 — M230§2)(23)l/2

44/|x—a|

2a P1
(1*2P1)(m) +(1+2P1)(

[x—al|r

X —_—
2a

(46)

It is seen from(43), (44) that(i) the tensile stress exhibits a square
[qot singularity and the corresponding stress intensity factor is
etermined by the remote tensile stress. In particular, this implies
that a pure electric-field loading does not induce any singular
tensile stress ahead of the electrode-ceramic interface crack tip.
(ii) the shear stress exhibits the dominant-order nonsquare root
singularity. In addition, bothors, and D} could give rise to a
dominant-order singular shear stress at the bonded interface.

The complete solutions obtained in Sections 3 and 4 are used'{i£S€ results suggest that the interface shear stress could play a
study the near-tip singular field, with an emphasis on the singufgignificant role in debonding of the electrode layers from ceramic

stresses ahead of the interface crack tip.

5.1 A Single Interface Crack. From (19), (21), (22), the
upper limit of Stroh’s function ahead of the crack ®p-a is

B/f (x*)= MGo(x), x>a. (42)

1

Thus, the singular parts of the tensile and shear stresses ahead of Bif{ (X")=

the crack tipx=a are

T ‘732( 2a) 12

N

Journal of Applied Mechanics

(43)

matrix in piezoelectric multilayer materials.

5.2 Two Parallel Interface Cracks. If a pair of parallel
electrode-ceramic crackas shown in Fig. (b)) are considered, it
follows from (19), (21), (22) that

0
[Yil23| D3 (23)1/2
—_— +NG(X), X>a.
Yo | 4 [x—a] 0
-1
(47)

Thus, the singular stresses directly ahead of the crack-tia are
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_ 0’2*2(2a)1/2 Effect of Electrical Field on Singular Shear Stress Induced by a
0(X) = W' X>a (48) Remote Tensile StressNext, we consider a combined electrical/
mechanical loading. Of particular interest is the effect of an elec-
trical field on the singular shear stress induced by a remote tensile

(2a)*? |x—al|~ 0 ! | |
o1 (X)=— 0t | (1+2p )| —— stress - o3,)>0. In this case, the dominant-order singular shear
1 124|X_a|1/2 P1 2a o3
stress is
. A(142p1)M (M D3 — Mog03,) (2a) (Y2 P2
+(1-2p)|o—7| |+ X>a (49) e g o
Ix—al AM 1M x—a| 21

and the upper normal electrical displaceméhe lower one can Note that

be obtained immediately from the symmetry of the present)case
M2>0, Moz —[Y]23%[ Yy ]23-

is given by
It is concluded that electrical field enhances the dominant-order
D) —D’z‘(2a)l’2+ L INY(28)12 singular shear stress caused by the remote tensile stress if
x")= o
2 2\[x—a]  AYyldx—al’? DA[Y,]p5>0. (53)
|x—al\r1 2a |\~ On the other hand, electrical field reduces the dominant-order sin-
X|(1+2p)| — =] —(172pa) x_al gular shear stress caused by the remote tensile stress if

(50) D3[Y]2s<0. (54)

Similar to Section 5.1, the tensile stress given(4§) exhibits a !t turns out from(52)—(54) that an electrical field enhancesr
square root singularity while the shear stress giveridsy exhib- reducegthe singular shear stress caused by a remote tensile stress
its the dominant-order nonsquare root singularity. In the presehine electrical field is applied opposite tor in the same direc-

case, however, he oading parametafs andD; co notncuce. [on 28 e Polng drection, This conclusion fs contrary 1o e
any singular shear stress at the bonded interface. 9 g

neous piezoelectric medium under combined electrical/

mechanical loadingsee[19—-20) where these authors concluded
5.3 Effects of an Electrical Field on Singular Shear Stress that crack growth is enhancedr impeded by an electrical field

Electroceramic multilayer devices are used usually under elec@Pplied in the same direction &sr opposite to the poling direc-

cal or electrical/mechanical loading. Hence, it is of great intere4@n-

to study the effects of an electrical field on interfacial crack

growth in piezoelectric multilayer materials. As stated above, only Conclusions

shear stress exhibits the dominant-order singularity ahead of thﬁ . L . . .

interface crack tip. Therefore, let us examine the effects of an n view of practical importance of interfacial cracking observed

electrical field on the dominant-order singular shear stress. 11 _Mmany piezoelectric multilayer devices, the problem of
electrode-ceramic interface cracks is studied in the paper. Owing

Electrically Induced Singular Shear Stresg=irst, we consider to the presence of an intermediate electrode layer, the analysis of
a pure electrical loading. Because electrically induced interfaciaterface cracks between two piezoelectric materials is led to a
cracking has been observed as one of main failure models in mamnstandard mixed boundary value problem which likely does not
electroceramic multilayer systerfsee[5,7,8,9), it is of particular admit a general analytical solution. Our major finding is that this
interest to examine whether or not the linear piezoelectric modeixed boundary value problem can be solved explicitly when the
predicts an electric-field induced singular stress ahead of ttveo piezoelectric half-planes are poled in opposite directions per-
electrode-ceramic interface crack tip. Recently, Ru ef&8] pendicular to the electrode layer. In these cases, there is no oscil-
have examined interfacial cracking in electrostrictive multilayeatory singularity in spite of the lack of a symmetry about the
systems. Similar issue for piezoelectric multilayer materials hasterface when a single interface crack is considered. Furthermore,
yet to be investigated. the tensile stress is found to exhibit a square-root singularity

Under a pure electrical loading, the tensile stressdoes not ahead of the interfacial crack tip, while the shear stress exhibits
exhibit any singularity along the bonded interface, and the shehe dominant-order power singularity. In Section 5.3, the effect of

stresso;, along the bonded interface is given by an electrical field on interfacial debonding is discussed in terms of
the dominant-order singular shear stress. In particular, the present

—iNy(1+2p;)YaD3 (2a) 12 P model predicts that a pure electric-field loading could induce a
012~ 4[Y ] dx—a]Z P + p1<0. (51)  dominant-order singular shear stress ahead of the interface crack

tip. This provides a possible explanation for electrically induced
Evidently, the electrically induced singular shear strés%$) interfacial debonding observed in many piezoelectric multilayer
changes sign when the direction of applied electrical field relevices.
verses. Hence, if the singular interface shear stress plays a domi-
nant role in electrically induced interfacial debonding, the present
model appears to predict that the electrically induced interfaciACknowledgment
debonding is not sensitive to reversal of the applied electrical The author acknowledges the financial support of the Natural
field. This conclusion distinguishes the electrode-ceramic interfgeience and Engineering Research Council of Canada through a
cial debonding from crack growth in a homogeneous piezoelectgeant awarded to Dr. David Steigmann of the University of Al-
medium, for the latter some experimerisee[19-20) and non- berta.
linear theoretical modelgsee, e.g.[21]) have showed that the
effect of an electric field on crack growth essentially depends % di
the direction of the applied electrical loadifgthough the linear ppendix
piezoelectric model does not predicts any electric-field inducedIf the poling direction of a piezoelectric is parallel to the
stress intensity factor To our knowledge, it seems that no cleary-direction, plane deformation in they plane is decoupled from
experimental result has been reported in the literature on the ralatiplane shearing. In this case, if the poling axis is along the
of an electric-field in interfacial cracking in piezoelectric media.positive y-axis, we havesee[11])
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uc, o0 0
RgY]=| O 1C;y 1l |,
0 lle -1l
C, >0, Cy>0, e>0, &>0. (A1)

Further, according to some known numerical solutig2g,23) it
can be verified[21,24)) that

0, Y121 Y13
|m[Y:|: _Y121 0 0 Y12>0, Y13<O
- YlSl 0, 0

(A2)

whereY, andY 3 are two real numbers. Hence, the matyixsee
(7)) for a piezoelectric poled in the positiwedirection is of the
form

Y, 1Y, Y3
Yi=[ =Y, Yo, Yo (A3)
_iY131 Y231 Y33

where all other real number¥,;;, Yo, Yo3, andYss, can be
obtained by comparin@A1) with (A3). Now, through a rotation of
the coordinate system, the mathiXor a piezoelectric poled in the
negativey-direction is found to have the form

Y1, Y12, —iYy3
Y =| =Y, Yz,  —Ya (A4)
iYi3,  —Yaz,  Ya3

where the superscript-"
it follows that

indicates the poling direction. Further,

— 1
[Y'+Y i
2(Y11Y33— Yio)
Y1;Yaa— Y2
y 0 (Y11Y33 13)’ 0
Y22
_iY13 0 Yll
(A5)
Y13Y 05— Y1,Y
0 . 13123 122 33 0
Y33Y11— Y13
=T =T Y12 Y23
YY) YT =Y )= = 0 2
( ) ( ) Y Y.
Y11Y23_ Y12Y13 0
YaaY11— Y
(A6)
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Surface Waves in Coated
Anisotropic Medium Loaded

T.-T. Wy’ . . P—
~vw, | With Viscous Liquid
Institute of Applied Mechanics, The development of micro-acoustic wave sensor in biosensing created the need for further
College of Engineering investigations of the surface wave propagation in a viscous liquid loaded layered medium.
National Taiwan University, In this paper, we employed the sextic formalism of surface waves to study the viscous
Taipei, Taiwan, R.0.C. effect on the dispersion and attenuation characteristics of surface waves in a viscous
liquid loaded layered medium. The dispersion relation for the viscous liquid loaded
single-layered anisotropic half-space is given. Numerical examples of the Rayleigh wave
and Love wave dispersion for the cases of a Cu/Fe layered half-space (isotropic) and of
a Si0O,/Si layered half-space (anisotropic) loaded with viscous liquid are calculated and
discussed[S0021-893600)01902-4
1 Introduction Further, the investigations presented so far are either for a Lamb

Surface waves have been applied successfully in many of have (and Rayleigh waveor Love wave propagation.

Sn this paper, based on the sextic formaligfi2,13), we
technological fields, such as NDE of materials, seismological ex: ’ - ; : b i ;
) . . o . t h that table for stud both the Rayleigh
ploration, and SAW devices in electronic industry. Theoretlcgresen an approach a 3 sUlav’e for siiaying bo © ray'elg

) ) - nd Love wave propagation in a viscous liquid loaded anisotropic
analyses of the propagation of surface acoustic waves in laye{ggareq half-space. To demonstrate the utilization of this ap-
media have been reported in the literature. A review of the ealyoach, dispersion relations for the case of a single-layered aniso-

analyses on the dispersion of surface waves in an isotropic layetgshic half-space loaded with a viscous liquid are presented.
medium can be found in the book by Aki and Richafd In the

last decade, the applications of acoustic microscopy and fiber-
reinforced composites have initiated the interest in studying ti®e Surface Waves in Viscous Liquid Loaded Aniso-
wave propagation in layered isotropic or anisotropic mefia- tropic Layered Solids

4]). Experimental and inverse analyses of surface waves in al

anisotropic medium or layered medium have also been reporﬁa\?ég?ncg:viigi'%n?é Vl\;aig dStrL]’;%'_'Qg;?g ?;zp;%ﬁlggtor:usmug:fif
([5,6]). On the other hand, the development of the micro-acous - piC 1ay: pace, 1 . .

. L i .g@r’face and boundary conditions, increases rapidly with the num-
tions of the surface wave propagation in fluid loaded layered mgz, ¢ layers overlaying the half-space. For the case of an aniso-

dium. A detailed experimental study of a Love wave sensor fgf,ic jayered half-space, an alternative way is the application of
biochemical sensing in liquids was given by Kovacs ef@l. ihe sextic formalism with special treatment on the numerical sta-
They showed that, for small viscosity, the interaction of an acougjity. A stable sextic formalism for the solution of surface waves
tic Love wave with a viscous liquid can be described by a Newgas given by Mal to study the anisotropic composite laminate
tonian liquid model. under periodic surface loadf12]). Later, in[13], another stable

In the field of nondestructive evaluation using elastic wavegextic formalism for the anisotropic surface wave solution based
several investigations on the viscosity-induced attenuation haye the invariant imbedding technique was also given. In the sextic
also been reported in recent years. On neglecting the heat condigemalism, the equation of motion and the constitutive equation
tion effect, Wu and Zhy8] proposed an approach for studyingare combined and arranged to form a first-order matrix differential
attenuated leaky Rayleigh waves due to viscous damping. Inequation. The displacement and the traction acting across the
subsequent paper, Zhu and W@l employed the same approachplanes normal to the layering surfaces are grouped into a six-
to study Lamb wave propagation in a plate bordered with a vigimensional vector. In each layer, the solution of the matrix ODE
cous fluid layer. Recently, Nagy and Nayfit0] investigated the forms a transfer matrix that can be utilized to map the variables
viscosity-induced attenuation of longitudinal guided waves in rod&om one surface to the next layering surface. With this formula-
loaded with a fluid layer. In a subsequent paper, on including thién, the size of the matrix encountered in the computation is
viscous effect on the longitudinal wave in a fluid, Nayfeh an#hdependent of the number of layers. It is worth noting that to
Nagy [11] derived a formal solution and examined the effects gvoid the numerical instability in the calculation, special treat-
fluid viscosity on the Lamb wave as well as leaky the Rayleigftents must be taken. Details of the respective special treatments
wave. The viscous liquid loaded substratiasered half-space or can e found irf12] and[13], . L
rod) of the above-mentioned investigations are assumed isotroqic.m. the literature, Wu and Zh[B]. utlllzed_ th? I__amb S vIscous

Iquid model to solve the solid-viscous liquid interaction prob-

— lems. In a later paper, Nayfeh and Ngdyi] pointed out that the

1To whom correspondence should be addressed. i p s .

Contributed by thz Applied Mechanics Division oHE AMERICAN SOCIETY OF n.]Odel Utlll.zed by Wu and Zhu for a .VISCOUS |IQUId. ha.s the defi-
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiED  CieNcCy Of incorporating the attenuation of a longitudinal wave.
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sep-They suggested possible models to improve the above deficiency,
tember 30, 1998; final revision, December 7, 1999. Associate Technical Editor: A. §ne s modeling the viscous liqui@ith the viscous coefficient

Mal. Discussion on the paper should be addressed to the Technical Editor, Profe ; f i
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstoz,fghmed agu) as a hypothetical solid whose shear rigidity equals

Houston, TX 77204-4792, and will be accepted until four months after final publl-©> &L - The Othe.r one is the use of the so-called Stokes model
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. which split the viscosity parameter betwe@p, andC,5. Accord-
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ing to their conclusion and our calculations, we note that the dif- For a harmonic plane progressive wave propagating irxtlze
ferences induced by adopting the suggested two different modplane, the scalar potential, the vector potentia§s, and the anti-
are very small for a low-frequency range. plane displacement can be assumed in the form as
In the Stokes model for isotropic viscous liquids, we €gf _ —ikyz —ik,42) i (0t —kyX)

= K+ (43) wp, and Cyg=x— (2/3)i wp, . k=p ¢ is the bulk e=(@e Ttrae e @)
modulus of the liquid, wherg, andc, are the density and lon- Y= (az,e 57+ age K7l (@ k) (5)
gitudinal wave velocity of the viscous liquid. Similar to the wave b= (aye Kt + ageiks?)gl (@1 —ke) ©)
propagation in an isotropic elastic solid, the waves in an isotropic
viscous liquid can be divided into the in-plarie-z plane with Wherea;,a;,as,a4,as,a are unknown constants armgy, K,
displacementsi, w) and the antiplanéwith displacement) mo- andk,; are the wave numbers of the up-going waves along the
tion. For the in-plane motion, the scalar and vector displacemeifisitive z-direction, whilekz,, kzs, andk, are those for the
potential of the viscous liquig, ¢ satisfy the Helmholtz equation down-going waves. The relations betwden, K5, K3, Kz4, K5,

5 ) k.6, andk, can be obtained by substituting E@4)—(6) into Egs.

Viet+kie=0 @ (@0-.

Similar to the derivation of the sextic formalisfhl3]), the

ith k2= w?p, I(k+ (4/3)i , and the diffusion equation A
with k= wp /(i + (48) o) st quat relationships between the tractiopand the velocity, of a vis-

W), cous liquid for the up-going wavea(=1) and down-going wave
at \p. V=0 (2)  (a=2) can be obtained as
L
whereV2= (52 9x2+ 3% 9z2). 1(2)=Z,0,(2) =12 @)

We note that if the ratiaou, /x is very small, therk? in Eq.  whereZ,, ,Z,, are the local impedance of the up-going wave and
(1) can be approximated &= w?/c?. This approximation leads down-going waves, respectively, and are defined as
to a solution similar to the resullt of Wu and Z.DSI]‘. . ZaL=LaLA;L1 a=12 ®)
For the case of antiplane motion, the material is only subjected
to the shear deformation, and therefore, the deformed volume Yé1€re

mains unchanged. From the Navier-Stokes equation, the antiplane ok, 0 —wkg wky 0 wky
displacement satisfies the diffusion equation as . .
A= 0 lw 0 , Ay = 0 lw 0
a_v_(&>v21):o_ (3) wk,y 0 wky —wk, 0 wky
gt \pL 9)
|
—2iwukky 0 iop(ks—k)
0 wm Kk 0
Ly = , , MLKZ2 (10)
— k(KK + Jlopki—gionks 0 —2ieukks
2iopkekz 0 iw/’«L(k§3* k>2<)
0 —wp k 0
Ly = , , MLKZ2 . (11)
*K(k§1+k)2()+§iw,u|_kff§iw,u|_k§1 0 2w Kekyg
I
3 Dispersion Relation t(h™)=Ggi(h™). (14)

Consider an anisotropic layered half-space with elastic proper-

ties varied only along the-axis, If, in each layefe.q., medium B On the other hand, in the viscous liquid half-space, there is no

existing down-going wave; therefore, the global impedance is
B ivalent to the local impedance of the up-going wale,
which is given in Eq.(8). The tractiont(h®) at the interface is
then written as

t(z) in medium B can be expressed @$3])

(2)=Gg(2)[i00(2)] (12)

wherew is the circular frequency an@g(z) is the global imped- t(h™)=2y 9(h™). (15)
ance which relates the velocity field{(z) to the traction field.  From the continuity conditions of the traction and the particle

The expression ofGg(2) is given in the Appendix for conve- velocity at the solid-viscous liquid interface, and E¢id), (15),
nience. For a single-layered anisotropic half-spdgg. 1) with a we find that

traction-free surface, the traction zt h vanishes, then from Eq. R
(12) and with the existence of a nontrivial solution we have the (Gg—Z1)¥(h)=0. (16)
dispersion equation, which relatks to the circular frequency of

For the existence of a nontrivial solution of the particle velocity
the plane wave» as

at the interface, the following condition must be satisfied, i.e.,
de{Gg|=0. (13) de{Gg—Z,,|=0. 17)

For the case of a viscous liquid half-space on top of a single- Equation (17) is the dispersion relation for a viscous liquid
layered half-space, from E@12), the traction at the solid-liquid loaded single-layered anisotropic half-space. The relative magni-
interface can be written in terms of the particle velodith ) as tude of the interface velocity vecté(h) can be obtained by sub-
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stitutingk, andw (which satisfy Eq(17)) into Eq.(16). Once the 0.0 02 04 06 o

interface velocity vector is obtained, the traction vector at the p/e,

interfacet(h) can be obtained from Eq14) or (15). The particle

velocity and the traction vectors at any position in the viscousg. 3 The Love wave attenuation as a function of the density
liquid half-space, interface layer, and the solid half-space can th&to p./ps in a liquid loaded Cu-Fe layered half-space  (isotro-
be evaluated, in a straightforward way, from the known vectof¢). the frequency is equal to 20 MHz

v(h),t(h).

4 Numerical Calculations Cu: p=8500kg/m, A=11.2<10°N/m?

In the following numerical simulations, both the Rayleigh wave _ 0 5
and Love wave in a single-layered isotropic as well as anisotropic p=4.39 10O N/m?

half-spaces loaded with viscous liquid are considered. In particu- Fe: p=7870kg/mi, A=11.3x10"°N/m?,
lar, the numerical result for the Love wave in a viscous liquid 5
loaded single-layered half-space was simulated and compared w=28.2x 10'°N/m?.

with those in[7].

4.1 Isotropic Single-Layered Half-Space Loaded With Vis-
cous Liquid. In [7], the propagation of a Love wave in a vis-
cous liquid loaded single-layered half-space was given. In th
calculation, the substrat&T-cut quartz was approximated as an
isotropic substrate with similar propertigp=2200 kg/ni, u
=1.74x 10'°N/m?). The properties of the surface SiGayer (h
=1.46um) werep= 2650 kg/ni, u=6.6X 10'*°N/m?. The oper-
ating frequency of the Love wave sensor assumed wWas

To understand the influence of the liquid density on the attenu-

ation of the fundamental Love wave, two frequencigé MHz

and 300 MHz were chosen for the following simulatioriBigs. 3

&hd 4. In the figurespg is the density of the substratEe). The
dotted line represents an ideal liquid loaded on the Cu-Fe layered
half-space, and the solid and bold solid lines represent the cases of
moderate viscous liquid loading«{ =0.1 N.s/nf) and highly vis-
cous liquid loading f, =1 N.s/nf), respectively. The result

y ! shows that the bigger thg /pg ratio, the higher the attenuation of
=123.5 MHz. Figure 2 shows the frequency stiifi f|/f in per-  the |ove waves. The attenuation of the Love wave is dependent
centagg and the attenuatiofjim k,/Rek, in percentageas func- o, the magnitude of the viscosity as well as the frequency. Results
tions of Jw7p, which was calculated based on the current formuyso showed that there is more than a one order difference be-

lation. The results shown in Fig. 2 are exactly the same as thqQ§gen the Love wave attenuation for operating on 20 MHz and
shown in Fig. 5 of 7]. 300 MHz.

In the following calculations, the case of an isotropic Fe half- oj the phase velocity dispersion of the fundamental Rayleigh
space with Cu surface lay€20 um in thicknesg is considered. gyrface wave mode, numerical results showed that the increase of
The material properties of polycrystalline Cu and Fe are viscosity results in a slight decrease of the Rayleigh wave veloc-

ity. For example, at a frequency equal to 400 MHz, the Rayleigh

.0
. [Atm(k,)/Re(k.) 12000
R 1111 .
. 1=1.0 Ns/ne?
6 E 8000 4
b5y
o
£ J
4 1 g
g
g 4000 —|
2 - Z p=0.1 Nes/om?
e Ideat Liquid
0 . ; . . 0~
0 2 4 6 8 10 — T
s s 0.0 02 0.4 0.6 0.
Jopp, (107kgm™s™) o/p,
Fig. 2 The frequency shift and attenuation of Love wave in a Fig. 4 The Love wave attenuation as a function of the density
viscous liquid loaded single-layered half-space (isotropic ST- ratio p, /ps in a liquid loaded Cu-Fe layered half-space  (isotro-
cut quartz ) pic), the frequency is equal to 300 MHz
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Fig. 5 The phase velocity dispersion of the Rayleigh surface
wave in a liquid loaded SiO ,—Si layered half-space (anisotrop-
ic). The Rayleigh wave is propagating on the  [001] surface and
along the direction with 15 deg away from  [100] axis.

wave velocity of the ideal liquid case is 2129.8 m/s, while that of
the highly viscous liquid case is 2113.8 m/s. For the case of Love
wave velocity, we note that the increase of viscosity results in a

negligible change in wave velocity.
4.2 Anisotropic Single-Layered Half-Space Loaded With
Viscous Liquid.

moderate viscosity 4, =0.1 N.s/nf) and high viscosity f

=1 N.s/nf) cases. The properties of the anisotropic silicon half-

space and the surface lay@sotropic SiQ, 20 um) are given as
SiO.:
p=2332kg/mi, C;;=16.6<10°N/m?,
C1,=6.4<10°N/m?,  C,4=6.4X 10" N/m?
Si:
p=2200kg/mi, C;;=7.85<10"°N/m?,
C1,=1.61X 10'°N/m?, C,4=3.12< 10"°N/m?.

In this subsection, we consider propagation of
surface waves in an anisotropic single-layered half space loaded
with viscous liquid. The viscous liquid loadings considered are the

16000
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o4 | T 1=0.1 Nes/m’
g
5
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[
Z
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g
]
=
=
g
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Fig. 7 The attenuation of the Love wave in a liquid loaded
SiO,—Si layered half-space (anisotropic ). The Love wave is
propagating on the [001] surface and along the direction with
15 deg away from [100] axis.
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Fig. 8 The distribution of the particle velocity components for

the Love wave propagating along the direction with 15 deg
away from [100] axis (f=25MHz and u; =1 N.s/m?)

decreases as the frequency increases. For frequency high enough,
the dispersion of the phase velocities approach that of a liquid
loaded SiQ half-space. Figure 6 presents the corresponding at-

Figure 5 shows the calculated results for the fundamental Rdgnhuation of the cases shown in Fig. 5. We note that the big
leigh wave propagating on tH@01] surface along the direction attenuation of the ideal liquid case is due to the leak of energy into
with 15 deg away froni100] axis. From the figure, as comparedthe liquid half-space.

with the case of free single-layered half-spddetted ling, one

Figure 7 shows the calculated results for the attenuation of the

finds that at a fixed frequency, an ideal liquid loading results infandamental Love wave propagating along the direction 15 deg
slight increase of the Rayleigh wave velocity. Similar to that of away from the{100] axis. It is noted that there is no attenuation
isotropic single-layered half-space, the Rayleigh wave velocigile to an ideal liquid loading. On examining the magnitudes of

80000

—— HW=10Nsm’
H=0.1 N-s/m’*
Ideal Liquid

60000

40000

Attenuation (neper/m)

20000

T T T T
200 300 40
Frequency (MHz)

T T
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Fig. 6 The attenuation of the Rayleigh surface wave in a liquid
loaded SiO ,-Si layered half-space (anisotropic ). The Rayleigh
wave is propagating on the [001] surface and along the direc-
tion with 15 deg away from [100] axis.

Journal of Applied Mechanics

the attenuation of the Rayleigh watig. 6) and Love waveFig.
7), we found that the Love wave attenuation is much smaller than
that of the Rayleigh wave.

Figure 8 shows the distribution of the particle velocity compo-
nents along the depth. The calculated results are for the funda-
mental Love wave propagating along the direction with 15 deg
away from thg 100] axis and with the frequency equal to 25 MHz
and viscosity equal tg, =1 N.s/nf. Due to the anisotropy of the
substrate, we note that in-plane particle velocity components
(vq1,v3) are not vanishing. However, the amplitude of the anti-
plane velocity component, is much larger than that of the in-
plane components. In addition, most of the energy of the Love
wave is confined around the surface gi@yer (about 0.1 to 0.2
wavelengths

5 Concluding Remarks

In this paper we have employed the sextic formalism of surface
waves to study the viscous effect on the dispersion relation of
surface wave propagation in a viscous liquid loaded layered me-
dium. The dispersion relations for a viscous liquid loaded single-
layered anisotropic half-space are given. Numerical examples for
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both the cases of isotropic and anisotropic substrates were calarereG, is the global impedance of the adjacent mediink. , ,
lated. The results showed that, for the isotropic case, the cal@; are 3X 3 matrices, which are generated from the six eigenvec-
lated results are in agreement with those of the existing referentas.
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Study of Frictional Impact Using a
L.sohansson | Nonsmooth Equations Solver

A. Klarbring
In this paper a mathematical formulation and a numerical algorithm for the analysis of
Division of Mechanics, impact of rigid bodies against rigid obstacles are developed. The paper concentrates on
Department of Mechanical Engineering, three-dimensional motion using a direct approach where the impenetrability condition
Linkoping University, and Coulomb’s law of friction are formulated as equations, which are not differentiable in
$581 83 Linkoping, Sweden the usual sense, and solved together with the equations of motion and necessary kine-
matical relations using Newton’s method. An experiment has also been performed and
compared with predictions of the algorithm, with favorable results.
[S0021-893600)01402-1
1 Introduction velocities, which are assumed to exist. These velocities are, as an

approximation, replaced with the velocities at the beginning and

This paper is concerned with a method for the analysis of i . . . I
pact of rigid bodies against rigid obstacles. Some problems of tnr%l/?d of atime step in the overall algorithm. This is the approach of

) o . Moreau, as described in More a paper which is much con-
Kind can be t_reated by specifying the quotlent_betwee_n the re"’j‘t'ﬁlgrned with the mathematical fgtingpo?the problem, but where a
normal velocity of approach and separatiphl); i.e., by introduc- !

. . Iy . L . very elegant algorithm for the case of completely inelastic impacts
ing the classical coefficient of restitution. This is sometimes 9ef iso given. See also More&@], where granular materials are
eralized to what is known as Poisson’s hypothdsie[2]). In ' '

. . : . Simulated with an algorithm involving iteration between the con-
many cases, however, such as in the experiment described in fg& laws and the equations of motion

tion 3 below, it is necessary to take both the normal and the

. . O roach seems to be less attractive for three-dimensional problems,
troduction of one or more additional constitutive parameters, su d in this paper the problem is instead formulated in the form of
as the coefficient of friction. Thus, in Brad], a quotient be- , <ystem of nonsmooth equations, to which Newton’s method is
tween normal and tangential impulses are introduced and sevefghjieq directly. This is an adaption to the present class of prob-

bounds, based on physical assumptions, are derived for this ajng of the method developed for elastostatic contact problems by
tient. In Stronge[4], the division of the impact process into atﬁh

. A ; ristensen et al.11], which, in turn, is a development of the
compression and an expansion phase is analyzed, and the pro od of Alart and Curnigil2].

is treated using a coefficient of restitution relating energies rather,q predictions of the model used in this paper are also com-

than velocities. Waltor5] suggests a model involving three pa-hared with an experiment performed for this purpose, and with an
rameters which for the special case of spheres is equivalent to E’i&)eriment discussed in more detail in an earlier paddy,
model used in the present paper.

The approach in the references cited above, as well as in t@e
present paper, is to use rigid-body dynamics combined with point i ) ) ] ] )
contact laws. An important question is, of course, how accurately!n this section, relations governing the three-dimensional mo-
the impact behavior of a physical body can be modeled usingi@n of a rigid body that comes into frictional contact with a rigid
theory based on rigid-body motion and point contact laws with @ll will be stated(Fig. 1). The rigid wall is assumed to be flat.
few constitutive parameters. Recent work addressing this issuel Ne contact conditions are most easily written in a coordinate
include Stoianovici and Hurmuzl{6], where a slender bar is frame attached to the wall, since the normal to the wall is constant
dropped onto a massive surface. Thiassical coefficient of res- N such a frame. On the other hand, an inconvenience is that the
titution is found to depend strongly on the orientation of the balfiertia tensor is then nonconstant. In the present work it was de-
something which is ascribed to the onset of vibrations in the b&#ded to write the rotational equation of motion with reference to
and that the impacts are actually divided into a series of micr8-P0dy-fixed frame where the inertia tensor is constant, and the
impacts. In Calsamiglia et a[7] the coefficient of friction for translational equation of motion and contact conditions in a frame
disks impacting a massive surface is found to depend on the Ingd to the rlgld_ wall. This is one of severa_ll possible choices, but
clination angle. This is attributed to an elastic mechanism whellgSems unavoidable that the transformation between a frame at-

nominally sliding contacts actually stops sliding and then resumi&ched to the wall and one attached to the body enters the formu-

sliding in the same direction during impact. lation at some point. o
In the present paper the impenetrability condition and Cou- We also note in this respect that the orientation of the body was

lomb's law of friction are formulated in terms of velocities andi€Scribed using quaterniofig.3]), and these are most commonly,

impulses rather than displacements and forces. Since the velgjough not neces?arig i;tegratehd gc;m the a_lrnhgular velocity dc_om-
ties are not necessarily continuous, it is assumed that these &SNS In terms of a body attached frame. Thus, two coordinate

apply to a linear combination of the left and right limits of theSyStems are introduced, movingy'z’-coordinates fixed in the
body and oriented along its principal axes of inertia and inertial

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF xyz—coc_)rc_allnates with th@l_a.XIS n_ormal and and zaxes paraIIeI
MECHANICAL ENGINEERS for publication in the ASME durnAL oF AppLiep (O the rigid wall. The equations introduced below can be regarded
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mayas vector-matrix equations, where vectors are three-dimensional
13, 1999; final revision, Nov. 1, 1999. Associate Technical Editor: N. C. Perkingolumn vectors Consisting of Components of physica| vectors rela-

Discussion on the paper should be addressed to the Technical Editor, Profe! : : ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstoz,wé to one of these coordinate frames while matrices are operators

Houston, TX 77204-4792, and will be accepted until four months after final publl€lating Suc_h vectors. The contact impU|§Ese_)(,ternal impulses
cation of the paper itself in the ASMEDIIRNAL OF APPLIED MECHANICS. F, the velocityx of the contact point, the velocity of the center

Governing Equations
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oy wy(ly—1y)
Glw')= Wy @y (I —1,0) 1. (3)
U)X/(,()y/(ly/_lx/)

The kinematic relations relating the velocities at the contact
interface with the velocity at the center of mass are written as

X=Xg+ (Alw' ) Xr=Xc+ (AR)'w’. 4)

2.2 Contact Conditions. In this section we assume that
contact between the rigid body and the obstacle wall has been
detected, i.e., the impenetrability conditige=0 is fulfilled with
equality, and conditions will be formulated to ensure that the body
either stays in contact or breaks away, but does not penetrate. In
the numerical implementation a small penetration is accepted
without correction(see Section 2.4 belowThe velocity of the
rigid body at the contact interfacesis= (x,y,z)! and expressed by
(4). These velocities together with the contact impulses will be
used to formulate contact-impact constitutive laws. Note that in
the present situation it cannot be assumed xhiatcontinuous or
even that it exists at all times. This is obvious for the case of an
impact, but in fact other cases of discontinuous velocities can

Fig. 1 Geometry of the contact occur, as is shown by the Painleegample(see Brogliatd 14]).
To resolve this difficulty it is assumed, following Morefgi, that
the right and left limits ofk exist, and that as a generalization of
the Signorini contact condition from static or quasi-static situa-
of mass and the position vectorand related matriR expressing tjons to the impact case, we may state
the location of the contact point, are all written in terms of their
xyz-components, while the inertia tensibrand the angular ve- y2=0, P,=0, P,y*=0, (5)

locity @' are written in terms of theix’y’z’-components.

where

€n
1+e,

2.1 Equations of Motion and Kinematical Equations.
The linear equations of motion are written in integrated form in
terms of velocities and impulses and expressed
Xyz-components as

yi= Yy (ty)+ y*(t)

1+e,
12 an average velocityg, is a constitutive parameter discussed in
_ _ Section 2.5, ang ~(t;) andy ™ (t,) are the left limit ofy at time
mxé= mx};+ P+F. (1) t, and the right limit ofy at timet,, respectively. Note thdb) is

_ . . . stated for a time interval, but makes sense also if the time interval
Here_,m_z mi, rrz1 being the mass of the body ardhe 'de”“‘Y is shrunk to time a instant. Furthermore, it can be shown that for
matrix. Xz andxg are the yelocntles of the center of mass _at timesmooth motion, wherx is continuous,(5) simplifies to the stan-
ty andty, t1<t,, respectively. Here and elsewhere in this papgfarq Signorini conditions. A further rationale behifs is that if
superscripts 1 and 2 denote thetvalue of a quantity at tthesd e first inequality is activated at all times when contact occurs,
t,, respectivelyP=(Py,,P,,Py,)" are the contact impulses dur-then impenetrability will be enforced9]). Thus, the contact law

ing the time intervalt ,t,]. A superscript indicates transpose of 55 stated here is applicable both to cases of impact and cases
a vector or matrix. These contact impulses are obtained from ighere the contact forces are smooth.

tegration of a vector valued measute: Relation(5) is a complementarity condition and this is a math-
ematical system that has been much studied in the area of math-
P=J dP. ematical programming. The number of numerical methods de-
[t1.t5] vised to deal with such and related systems is quite extensive,

For smooth contact situationsP=Pdt. where P is a contact both in thg mathematical and the engineering Iiterature'. Re_cgntly,
; " J is th t’ dard L b int L however, it has become clear for the case of quasi-static frictional
or.ce Vector, angi, ) 1S _?s an ar € .esgue |_n egrg. N CaSEontact problemgAlart and Curnier[12] and Christensen et al.

of impact, when the velocities are discontinuodB,is a singular [11]) that a most effective method is based on writing the problem
measure of “Dirac” type, a so-called percussion. We refer tgs 3 system of nondifferentiable equations and applying a Newton
Moreau[g] for a detailed discussion of these issuesire known method specially devised for such equatigfis]). Here, we will
impulses from external forces. These forces are assumed t0 agg¥ a similar approach for frictional impact problems. To that end,
the center of mass of the body and are therefore not present in {li need to rewrité5) as an equation and, followind.6], a first

moment equation given below. step is to staté5) as a variational inequality:
The moment equations are writtenxny’z’-components: )
P.eK,: Y*Pi-P)=0 VP}eK,, (6)

t
|’m’2=l’w’1—f G(w’)dt+f ARdP. (2) where
ty [ty.t5]

[ H H H H 51 Kn:{Pn|Pn>0}
Here,l’ is the inertia tensor, which in the'y’ z’ -system becomes
a constant diagonal matrix with componehgs, I,,, andl,,. A This variational inequality can be rewritten as
is the transformation matrix from xyzcoordinates to ) A . .
x'y’z’-coordinates such th& =AP, whereP’ andP are the two PaeKnt (P (Pa—roy))(Py—Pp=0 VPleK,,
representations of a geometrical vectBr.is the antisymmetric @)
matrix of components of such thatRP=rXP, where X is the wherer,>0 is a parameter which we eventually will be able to
ordinary vector product. The vector of gyroscopic terms can lkgljust for best numerical performance; note, however, (Rais
written in x'y’z’-components as equivalent to(5) for any positive value of ,. It is well known
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that (7) indicates a projection onto the skt,, and due to the It would perhaps be appropriate to discretiz@ndR in the same
simplicity of this set we end up with a most useful representatiomay asG. However,G depends on the angular velocity, which
of (5): cannot be assumed to be continuous, whefeasdR depend on
. . position, which is assumed to be continuous. It was therefore
Pa=Pro[ P, —rny* Kn]=(Pnh=rny)., (8)  deemed less important to include the value of the quantity at time
where &), =max,0). Thus, we are able to write the compledj+1 in the discretization oA andR than in the discretization of
mentarity condition5) as an equation. Even though this equatiofs- Further, note that we aim at a system of equations with veloci-
is not differentiable, it opens the way for the use of a Newton-tygées, angular velocities, and contact impulses as unknownsAand
algorithm. and R depend on position. Using a discretization involving
Next we need to write Coulomb’s law of friction in a way suchA(tj+1) and R(tj,;) would require either adding the equations
that discontinuous velocities and percussions are included. Cé@r the position to the system of equations instead of computing
lomb’s friction law implies firstly that the friction force belongs tothe position in a second stage, or else using an iterative procedure.
a cone of forces, the friction coefficient being the measure of tHdthough this would be quite possible, it was decided to sacrifice
pointedness of this cone, and secondly that when sliding occurdhits improvement of accuracy in the interest of simplicity.
is in the opposite direction of the force. These principles can, as isTo discretizg4) it is only necessary to assume ti#aandR are
well known (see, e.g., Christensen et l1]), be put in the math- constant and known. Writing the equation at titpe, then gives
ematical form of a variational inequality. By choosing to write w1 s+l i1
this variational inequality in terms of an average velocity and fa=x"""-x& "~ (AR)'@" "*=0. (14)
impulses, instead of velocity and forces as in the classical smoottFinally, to discretize(8) and (10) it is assumed that the right
case, we obtain a formulation of friction which includes impacind left limits of the velocities can be approximated with the
and which reduces to the classical Coulomb friction law for slidzelocities at the beginning and end of a time step of the discreti-
ing contact without impact. We thus put down our law of frictiorgation. Equation$8) and (10) then give:
as follows:

PieK(Py): (WO)Y(P*—P)=0 VP*eK(P,, (9 f=P—(P—r ——yi+ "'”)) =0, (15
e Ki(Pp): (W)Y (PY ) v e K(Pp) 9) 4=Fn n n1+eny 1+eny X (15)
whereP,= (P ,P,)", L
e . o
Ki(Pn)={P{|P|=uP,}, f5=Pt—Pr0{Pt—rt(1+ele+ mw”l),Kt((Pnh)}:O,
(16)
ca t . -
W _1+etW (ty)+ 1+etW (t2), where K,(P,) has been replaced with((P,).), following

- . ) o ) Christensen et a[11].
w" andw™ are right and left-hand limits o= (x,z)' ande; is a

constitutive parameter discussed in Section 2.5. Similarlygjo 2.4 Solution of the Equations. Equations(11), (13), (14),
this variational inequality may be rewritten as a projection: ~ (15), and(16) f_orgn a SYEtlem of 12 lnonlinear equations for the 12
_ - unknowns x!*1, x5, w1l and P. Putting f
Py=Proj P,—rw? K (P,)], (10) =(f!,f5,f5,f,,fL)! the solution is found by a direct application
wherer,>0 is a parameter, which can be adjusted to improvef Newton's method to the equatidi=0. This equation is not
numerical performance. It is possible to conclude ti&) is a differentiable in the usual sense, but has the property of being
continuous equation which, however, is not differentiable everg-differentiable, meaning essentially that directional derivatives
where. exist at each point. This makes it possible to apply the Newton
method deviced for such equations by P&h§]. Here, a some-
) o ) ~ what simplified version of this method was used where the nec-
2.3 Discretization and Formulation as a System of Nonlin- essary derivatives were computed by arbitrarily picking one such
ear Equations. For the discretization, a sequence of timegjirectional derivative at nondifferentiable poirtee Christensen
[ti, ...t tj1, ... tp] s introduced. Equationsl), (2), (4), et al.[11]).
(8), and(10) will be discretized to form a system of 12 nonlinear The necessary derivativesff, f,, andf, are easily calculated;
equations for 12 unknowns at ting, ;, assuming that everything those off, andfs are considerably more complicated. However,
is known at timet; . These equations can be solved for the Unhese equations can be formally identified with the corresponding
known quantities at timg .. ;. The solution can then be advancecsquations for the quasistatic case discussed in Christensen et al.
in time by repeating this process until the desired time interval fj$1] where the derivatives are given. The solution requires some
covered. ) ) o _ tuning of the numerical parameterg andr,. The line search
First, assuming thaf or a suitable approximation of is suggested by Pangee Christensen et 4ll1]) was tested. It did
known, no further discretization is necessary in Ef.and we not show any obvious advantage for the computations for the

have present paper, but might be necessary for cases with multiple
foemx il mxl—P—F=0. 17) Simultaneous contact points. _ N
1 G ¢ (11) The overall aim of the algorithm is to compute the position,
To discretize Eq(2) we put angular orientation, velocity, and angular velocity at tite, ,

-~ assuming rt]hat tlhes_e quantitif_es arﬁ krll(ov(\j/r)fa:] ar|13 egrli_er;;imﬁo
Nt i _ i+l compute the velocities, it is first checked if the body is in contact,
ft Gle)At=AEG(@™) (1= HG(@TI] - (12) i e impenetrability conditiog=0 is fulfiled with equality,
) . L or violated by some small amount. If it is, the velocities at time
where £ is a discretization parameter usually setée0.5 and tj., are computed by solving all the equations in Section 2.3
At=tj,,—t;. Itis further assumed thaA=A(t) andR=R(t) gimultaneously. This calculation proceeds from the position the
are constant and known: In practice these are computed from g4y had at the end of the previous time step, accepting without
position of the body at the beginning of the time step, ¥&%)  correction a small violation of the impenetrability condition and

i

=A(t;) andR(t)=R(t;). Equation(2) then gives assuming thalA andR are constant throughout the time step at
fo=1"w' 11— 1" @'+ £AtG(w') thgir v_aluz_es at the beginning of the time step. If no contact con-
_ dition is violated, only Eqs(11) and(13) need to be solved and
+(1- €)AtG(e' ") — ARP=0. (13) the terms involvingA andR disappear.
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When the velocities and angular velocities have been cot
puted, the position and orientation of the body can be compute
For the orientation of the body quaternions were use@ Stevens
and Lewis[11]).

If the motion of a system of bodies interconnected with spring
and dashpots is sought, the applied loads cannot be assumed t
known at timet; , 1, since, in order to incorporate the forces fron
the connecting springs and dashpots, they must be assumec
depend on positions and velocities at timye,. This difficulty
can be resolved iteratively and if such an iteration is introduced
is also possible to use better approximationsAt@and R if so
desired.

2.5 Physical Interpretation of the Parameterse, and e;.
It should be notedMoreau[9]), that the constitutive parameters
e, ande, introduced above will determine the nature of the cor
tact. Considering the case of impact there is a nonzero norn
impulse,P,,>0, and(5) implies

y* = _eny*_ a7 Fig. 2 Photograph from the experiments

Thus, the parametas,, can be interpreted as a restitution coeffi-

cient with e,=0 corresponding to purely plastic impact aagl

=1 to purely elastic impact. then a second time on the lower, before exiting in approximately

In the tangential direction there can be either stick or slip. If thdéne same direction as it was entering. The mechanism is that the

coefficient of friction is sufficiently large that there is no slip, eachall starts to rotate rapidly at the first impact. This causes the

component ()ﬂD;'"—Pt can be either positi\/e or negativey a(rgj relative tangential VE|OCity at the second impact to be Iarge

implies enough so that the ball changes direction and returns again in the
. . same general direction as it was thrown from. The process was
W =—ew , (18) photographed in stroboscopic light, to produce photographs of the

ande, can be interpreted as a tangential restitution coefficient. §&Me type as that shown in Fig. 2. The motion was compared to
should be noted, however, that the interpretatioreoés a tan- calculations performed with a different algorithm than in the
gential restitution coefficient is possible only for large values diresent work, but the model is the same, so that the results for
u, since the tangential impulse is limited by Coulomb’s law of@Se€s where both algorithms can be used are identical except for
friction, and in the sliding case, for a nonspherical body, there istfferences in numerical error. To perform the comparison the
coupling between normal and tangential contact impulses whiffrmal coefficient of restitution and the coefficient of friction
complicates things further. It should also be noted that the opp#ére measured directly, but no direct method of measuring the
site direction of tangential velocity and tangential contact impuld@ngential coefficient of restitution was available. However, ad-
as required by Coulomb’s law is applied to the linear combinatid{Sting & to obtain a good fit resulted in the good agreement

e/(1+e)w +1/(1+e)w", which does not necessarily imply bﬁtweertz experimenés agd calcula;ions _s_hownfinh Fig' ”3' ng(:h
that the tangential contact impulse is oppositavto, shows the computed and measured positions of the ball at differ-

It should be noted that the parametersand e, follows as a ent times. Here the crosses are experimental points, the filled
consequence from using contact laws of the tfdﬁh and (9) circles are calculated points and the circles are numbered in order
Since these equations should be valid also at a time instant whgf nhcerearselggnttln;e. eriment is a companion experiment to the one
there is a discontinuity in velocity, the velocity components them- P Xxper ! pani Xperi

selves cannot be used. When this issue is resolved by using av r:]OhanSSO'ﬂO] outlined above, and was performed for two

ages of the left and right limits of the velocity components th@ain reasons. First, s_ince ‘he.“? is no ObViQUS. sim_ple experir_nent to
parametere, ande, appear naturally '~ measure the tangential coefficient of restitution, it was desired to
N X . ; X L .
With the introduction of these restitution coefficients, there is St If the value ofe, obtained by adjusting computations to the
total number of three parameters describing the impact prOpjess.experlmental findings in the single ball experiments could be used

e,, ande,. This is somewhat problematic, since these parametépsp:.dngntthe hm;rttleotr;lgfcin(igcmtpsosrlftaecgquoﬁsozzegf 't?]éhgaﬁ;esggé
must be determined experimentally. In particular there is no ofXPer : W u : u

vious simple method for measurirgy. This topic is discussed in the single ball experiment. Secondly, when using balls, the
further in Section 3. geometry results in a decoupling of the tangential and normal

directions. This is because a normal contact impulse does not
. . . influence the rotation of a ball and therefore does not affect the
3 Comparison With Experiments tangential velocity, and a tangential contact impulse does not in-
An experiment was performed where a body, consisting of twituence the normal contact velocity since the rotation of a ball
rubber balls(superballs glued to a cylinder, was thrown so as todoes not influence the normal contact velocity. Thus, it was de-
bounce from a wooden surface. The process was photographediiad to test a case where this decoupling does not occur.
stroboscopic light and the positions measured from the photo-Next the experimental setup is described. Measured values are
graphs were compared to calculations with the above algorithgiven with more significant figures than actually warranted by the
One such photograph is shown in Fig 2. This is the photographiecision of measurements, and the last digit should not be
actually used for the comparisons below, and was selected frorirgsted. For the coefficient of friction an approximate interval is
series of similar photographs because, as far as could be judgéden, giving some indication of the precision of these measure-
from a 29 cm by 23 cm blowup, the motion occurs in a singleents.
plane. The motion occurs in a plane about 3 cm in front of the The body used consisted of two rubber balls, of the type avail-
ruler also seen on the photograph. able in toy stores glued to a paper cylinder, as seen in Fig. 2. The
In a previ